

Innovation in the UK Grid and related sectors

University of Strathclyde: the place of useful learning

Professor Graeme Burt graeme.burt@strath.ac.uk

Institute for Energy and Environment

Institute Capacity

- 31 Academic Staff
- 75+ Research Staff
- 150+ Research Students
- 25 Tech/Admin Staff

Institute Portfolio

- Research
 - EPSRC GoW: £21M+
 - Annual research spend £6M+
- Knowledge exchange
- Teaching & student support
- International engagement

AES

 Advanced Electrical Systems

HVT

 High Voltage Technology

PEDEC

 Power Electronics, Drives and Energy Conversion

WEC

 Wind Energy and Control

InstEE – centres & key relationships

Changing GB Energy Landscape

national**grid**

250+ MWh

101-250 MWh

Future energy mix

Gone Green generation background

http://www2.nationalgrid.com/WorkArea/DownloadAsset.aspx?id=34301

Future energy mix

Gone Green			
	2013	2020	2035
Electricity			
Peak demand/GW	60.5	59.3	68.1
Annual demand/TWh	345	338	366
Total capacity/GW	91	106	163
Low carbon capacity/GW	28	50	109
Interconnector capacity/GW	4	6	11
Residential HPs/Millions	0.1	1.2	10
EVs number/Millions	0.01	0.6	5.4

Future power system

Gone Green micro-generation installed capacity

Rate of Change of Frequency (RoCoF) for Gone Green following 1800MW infeed Loss

■ 0-50 ■ 50-100 ■ 100-150 ■ 150-200 ■ 200-250 ■ 250-300

System Operability - Future

Why do we need a System Operability Framework in GB?

nationalgrid

Islanded AC power system

Changes in the energy landscape

http://www2.nationalgrid.com/UK/Industry-information/Future-of-Energy/System-Operability-Framework/

System Operability - Future

Change	Affected Subjects
System Inertia	RoCoF Frequency Containment Generation Withstand Capability System Stability
Short Circuit Level	Protection Voltage Dips Voltage Management Resonance and Harmonics LCC HVDC Commutation
Reduction on Controlability	Supply and Demand Predictability
Distributed Generation Increases Electrification of Heating and Transportation Demand Side Response	DNO-TSO Interaction
Conventional Generation Closure New Nuclear Power Plant	Emergency System Restoration
Increased Reliance on External Power Networks	System Resilience
Series Compensation New CSC HVDC Links	Sub-synchronous Resonance
New VSC HVDC Links	Control Systems

http://www2.nationalgrid.com/UK/Industry-information/Future-of-Energy/System-Operability-Framework/

Electricity Networks should facilitate the take up of low carbon technologies

Tier 1 (TRL 5-8)

- Small scale, allowance given to each DNO
- Total £80m allocation; use it or lose it Tier 2 (TRL? "Not R&D")
- £64m per year, competitively allocated
- Small number of 'flagship' projects
- £100m 'successful delivery' bonus pot

help DNOs understand how they provide security of supply at value for money and facilitate transition to the low carbon

Innovation

economy

Outcomes from LCNF Projects

- 'Active' management of distributed generation and flexible industrial and commercial demand should both be viable 'business as usual' options.
- Strongly performing voltage control equipment could be used more often and can release network capacity more cheaply than historical 'fit & forget' solutions.
- Battery storage is not yet cost-effective; flexible domestic demand not yet effective in avoiding network reinforcement. Implementation & commercial innovation still required.

Strong Evidence Against		Indication	ıs Against	Inconclusive Indications For		ons For	Strong Evidence Fo		
-4	-3	-2	-1	0	1	2	3	4	

Outcomes from LCNF Projects

- DNOs reach mixed and sometimes contradictory conclusions on real-time thermal ratings of network branches and network reconfiguration for power flow management.
- More needs done on system level methodologies and business processes such as optimal operation, support for investment decision making, and commercial and regulatory frameworks.

Strong Evidence Against		Indicatior	ns Against	Inconclusive Indications For		ons For	Strong Evidence For		
-4	-3	-2	-1	0	1	2	3	4	

http://www.hubnet.org.uk

Voltage Control

- Voltage reduction effective for increasing headroom

 has good BAU potential
- Enhanced AVC via relay upgrade, additional control capability and enabling remote configuration, allows improved autonomous control and is a key enabler for area coordinated voltage control

Secondary substation OLTC has been shown to release significant legroom – but CBA vs LV reinforcement is uncertain

			BAL	J Progress				
-4	-3	-2	-1	0	1	2	3	4

Innovation	DNO					
Valtara Daduatian	ENW					
Voltage Reduction	SPEN					
Drimacy AVC	UKPN					
coordinated control	NPG					
coordinated control	WPD					
Secondary substation	NPG					
OLTC	ENW					
FACTS	WPD					
HV/LV Regulators	NPG					
	SPEN					
Switched Capacitors	NPG					

Network Innovation Challenge

The NICs are designed to stimulate innovation by network operators. Network companies submit and deliver projects in partnership with the wider energy industry. Funding of up to £81M every year.

Transmission

- national**grid**
- OSEAIT 2015 • EFCC 2014

- FITNESS 2015
- VISOR 2014

Transmission Capital Partners

- NeSTS 2015
- MASC 2014
- MTTE 2013
- TC Ormonde OFTO 2014

Distribution

• Angle DC

National Innovation Allowance Distribution

The NIA is a smaller allowance each RIIO network licensee receives to fund smaller scale innovative projects which have the potential to deliver benefits to network customers.

27 Projects

Low Voltage and 11 kV Networks

4 Projects

10 Projects

14 Projects

2 Projects

Low Carbon Generation and Connections

8 Projects

Safety, Health and Environment

8 Projects 15 Projects Images from http://www.smarternetworks.org/

National Innovation Allowance Transmission

Images from http://www.smarternetworks.org/

ATI Technology Strategy & Portfolio Update 2016

AIRCRAFT OF THE FUTURE

SMART, CONNECTED AND MORE ELECTRIC AIRCRAFT

- Enabling introduction of more electric systems
- Developing secure digital systems and communications
- Securing capabilities in fuel, landing gear and energy management systems

AEROSTRUCTURES OF THE FUTURE

PROPULSION OF THE FUTURE

Marine Power Systems

- University of Strathclyde Engineering
- Increasing popularity of all-electric designs
 - Fuel efficiency and emissions reduction
 - Flexibility and reliability
 - High capacity, low impedance
 - Novel architectures/loads

http://www.globalsecurity.org/military/systems/ship/images/tanker-Ing-image101.jpg

http://www.ship-technology.com/projects/queen_mary/images/image_1.jpg

Critical Infrastructure & Skills

eal-Time Power

Technology testing... >> systems testing

Example: supporting community renewables

AN ISLAND.

- Systems testing and proving prior to deployment
 - Communications
 - Interfaces
 - Storage technologies
 - ..

Example: Smart Frequency Control Project

- £9m+ project led by National Grid
- Investigation of fast regional RoCoF-triggered response using PMUs– loads, storage, generation
- Save £100M's in future
- PMUs and distributed controllers
- Testing at PNDC

