Hardware-in-the-loop (HIL) Test of Demand as Frequency controlled Reserve (DFR)

QIUWEI WU/Associate Professor Center for Electric Power and Energy (CEE) Technical University of Denmark (DTU) 15th September 2016 $f(x+\Delta x) = \sum_{i=0}^{\infty} \frac{(\Delta x)^i}{i!} f^{(i)}(x)$

DTU Electrical Engineering Department of Electrical Engineering

PowerLab Combines Experimental Facilities in a Unique Platform

Flexible multi-purpose laboratories

Lyngby & Ballerup Campus

Risø Campus

Stakeholders:

Investment: 18 million Euro

Bornholm - Full-scale Living Laboratory with 40,000 Inhabitants and 50% Renewable Energy Penetration

Resources:

- Wind power
- Biomass
- Biogas
- District heating
- Combined heat and power
- Solar power
- eMobility
- Active demand

Features:

- Nord Pool market
- Islanding capability

Intelligent Control Lab - Test-bed for Integrated Experiments

Wind Power in Denmark

Year 2014

Danish wind power generation: 39.1% of the electricity consumption

January 2014 Danish wind power generation: 63.3% of the electricity consumption

December 21th 2013 Danish wind power generation: 102% of the electricity consumption

Single hour July 9th 2015 Danish wind power generation: 140% of the electricity consumption

March 11th 2014

only 9 MW wind power generated out of installed 4,900 MW but 480 MW out of 580 MW solar units supplied the grid

Wind Power in Denmark

2012 25% wind power

DFR Control Logic

The DFR control logic type I disconnects and reconnects electric appliances to the grid when the system frequency falls below f_{off} and recovers above f_{on} , respectively

DFR Control Logic

The DFR control logic type II is customized for switching the thermostatically controlled loads by adjusting the nominal temperature set points T_{high}^{normal} and T_{low}^{normal} .

$$T_{high} = T_{high}^{normal} + kf(f - f_0)$$

$$T_{low} = T_{low}^{normal} + kf(f - f_0)$$

Heat Pump Model

- The dynamics of a direct air heating system can be sufficiently described by three thermal masses.
- The ambient air of the building interior has smaller storage volume, and defines a faster dynamics of the system.
- the larger storage volume of the building envelope, or structure, describes a slower dynamics of the system

$$\dot{T}_{i} = \frac{I}{C_{i}} \left(\frac{1}{R_{ie}} (T_{e} - T_{i}) + \frac{1}{R_{ia}} (T_{a} - T_{i}) + Q_{H} + A_{w} \Phi_{s} \right)$$

$$\dot{T}_{e} = \frac{I}{C_{e}} \left(\frac{1}{R_{ea}} (T_{a} - T_{e}) + \frac{1}{R_{ie}} (T_{i} - T_{e}) + A_{e} \Phi_{s} \right)$$

Table 1: Test Scenarios

Contingency Type	Ratio of Demand Change	DFR penetration level			
Demand increase	5%	0%	2.5%	5%	7.5%
Demand decrease	5%	0%	2.5%	5%	7.5%

(a)

Conclusions

- The DFR technology has been developed to utilize the demand side resources to provide fast reserves needed in the future renewable based power system.
- The DFR technology has been tested by offline simulations in the previous work.
- The real time HIL tests were conducted to verify the effectiveness of the DFR technology.
- The HIL test results show that the DFR technology can successfully arrest the system frequency and illustrate the efficacy of the SmartBox.

Thank you for your attention

DTU Electrical Engineering Department of Electrical Engineering