

Enhanced simulation methods and tools

Rishabh Bhandia

Electrical Sustainable Energy – Intelligent Electrical Power Grids TU Delft, Delft, The Netherlands

Workshop "Designing and Validating the Future Intelligent, Electric Power Systems" September 6, 2017, Fuldatal/Kassel, Germany

Motivation Example Coordinated Voltage Controller (CVC)

General Setup of CVC system

Co-simulation

- Smart grid system comprises of complex infrastructure, involving interaction among various domains
- This continuous interaction among the various components, devices and domains leads to huge amounts of data being exchanged
- Co-simulation helps in coupling among these domains to create a realistic representation of any smart grid infrastructure and its behaviour

Research Challenges (1/3)

- Handling of cyclic dependencies
 - A physical model, split into several sub-models for co-simulation is more convenient but the main problem is that the state equations of the individual sub-models are mostly interdependent

General physics simulator

Research Challenges (2/3)

- Coupling with hardware setups
 - Interfaces for coupling power hardware and simulation software are not properly standardized

Research Challenges (3/3)

- Signal-based synchronisation
 - Interfacing of power system & ICT simulators has become a very important part of smart grids in recent years but existing coupling tools are inflexible

© The <u>ERIGrid Consortium</u> EU H2020 Programme GA No. 654113

Functional Mock-up Interface (FMI)

- FMI is a tool independent standard to support
 - Co-simulation of dynamic models
 - Model exchange
- FMI is supported by more than 100 tools and is being used extensively by automotive organisations

ERIGrid Co-Simulation Approach

- FMI compliance
 - The tools selected in each domain (power system, ICT, etc.) should have a FMI-compliant simulation interface or have an API (or equivalent mechanism) that allows to control the execution of the tool
- State-of-the-art approach
 - The selected tool has to represent the state-of-the-art for its respective domain and ideally available to all partners
- Model libraries
 - A model library is setup to select and develop models for validation
 - They can be exported as FMU's (Functional Mock-up Units) compliant to FMI specifications across different domains

ERIGrid Work Methodology

© The <u>ERIGrid Consortium</u> EU H2020 Programme GA No. 654113

Validation Example Coordinated Voltage Controller (CVC)

Experimental setup of CVC system

Next steps and future work

- Scalability assessment methods of smart-grid co-simulations
- Scalability improvements for smart-grid co-simulations

