

Enhanced lab-based testing methods and tools

Thomas Strasser

Center for Energy – Electric Energy Systems AIT Austrian Institute of Technology, Vienna, Austria

Workshop "Holistic System Validation, Methods and Tools, Free Access to Best Smart Grid Laboratories"

October 5, 2017, Amsterdam, The Netherlands

Laboratory Integration Obstacles

- Power grids are mature infrastructures and have been extensively standardised
 - No standards for smart grid labs or what there primary purpose should be
 - Consequently, the use of ICT/automation systems (architectures, interfaces, etc.) is subject to large variations between facilities
- Smart grid labs are complex infrastructures with unique properties
 - Experimental nature of the installations
 - Changing user groups
 - Evolving configurations
- Finding a common ground when talking about lab integration can be a challenge

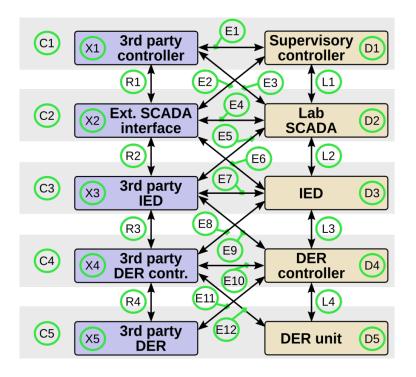
SmartEST Laboratory at AIT

Smart metering communication platform at TECNALIA

Issues Addressed in ERIGrid

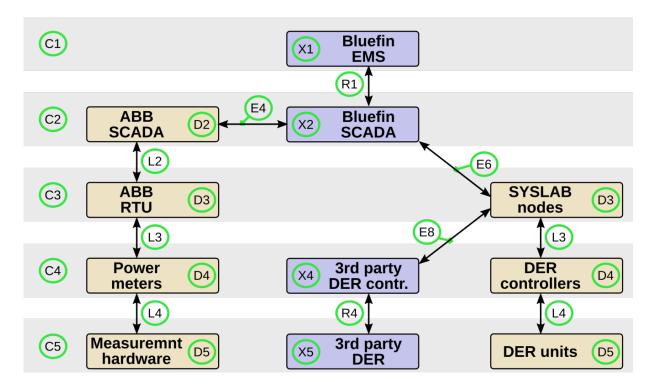
- Generic reference model for control hierarchies, interfaces and data flow in smart grid laboratories
- Documentation of complex DER behaviour
- Documentation of controller deployment procedures
- Uniform naming of signals and objects

Need for a Generic Reference Model


- Status quo
 - Availability of communication interfaces between the different parts of a lab determines to which degree the lab presents itself to the user as a collection of hardware components or as an integrated system
 - The automation and control aspects are often missing from descriptions of lab capabilities which tend to focus on the performance of the power equ.
- A one-size-fits-all model is complicated because
 - A wide range of automation levels/concepts is found among partner labs
 - Ad-hoc automation for individual experiments is not uncommon
 - Automation may involve communication between lab components and/or between the lab and third party equipment (under test)
 - The automation may be considered as infrastructure, as part of the system under investigation, or a combination of both

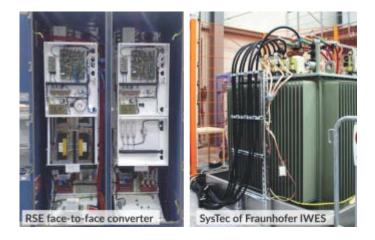
Generic Reference Model Description

- The model abstracts away from individual devices, controllers, protocols etc. as well as time, in order to focus on classes of controllers and interfaces
- Definition of five hierarchy levels at which control functionality may be deployed (both internal to the lab & external)
- Definitions of 20 communication interface locations
- Use cases for 12 interfaces between lab installations and external systems
- Partner examples of concrete experiment configurations



Generic Reference Model Example DTU SYSLAB & Electric lab

- Performance evaluation of a third-party smart grid automation system
- Augmentation of a low automation host lab (DTU Electric lab) with components and control infrastructure from a highly automated lab (DTU SYSLAB)



© The <u>ERIGrid Consortium</u> EU H2020 Programme GA No. 654113

Complex DER Component Behaviour

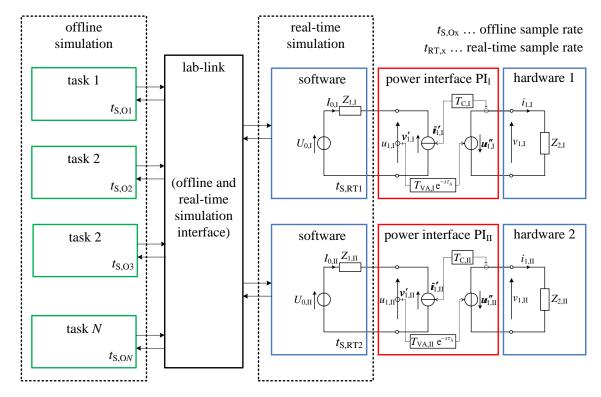
- Lab equipment (esp. DER units) often exhibits complex and undocumented behaviour when operated during experiments
 - Documentation often focuses on the operation under standard conditions
 - Examples include deratings, internal limits, safety circuits, alternate operating modes, functions added as part of laboratory integration etc.
- The productive use of a particular component often relies on unofficial knowledge associated with experienced lab staff – sometimes a single person
- ERIGrid conducted a survey of examples across partner labs, the results can be seen as a first step towards a more systematic documentation

Controller Deployment Procedures

- Deploying controllers software or hardware, from the unit level to the system level – is important for many types of smart grid testing
- It is very difficult for an outside user or research partner to gain an overview of the exact capabilities of a laboratory with respect to controller deployment. This complicates the selection of a suitable facility for an experiment.
 - Uniqueness of the individual laboratories
 - Many possible interaction patterns
 - Policies and safety/stability concerns (an interface exists, but it should not be used)
- Survey of controller hosting capabilities across partner labs
 - Physical capabilities
 - Interfaces
 - Procedures

Signal and Object Naming

- The partner labs have been developed from very different architectural viewpoints, resulting in different ways of modelling information
- Establishing a harmonized object and signal naming convention is necessary for machine-to-machine communication between labs
- Existing standards lack flexibility
 - Lab-specific description of primary hierarchy (physical, electrical, automation based, information based, etc.)
 - Additional domains (control, communication, etc.)
 - Unambiguous description of components which belong to multiple hierarchies and/or multiple domains


 ERIGrid has developed naming conventions suitable for the detailed description of static (objects) and dynamic (signals) data in smart grid laboratories.

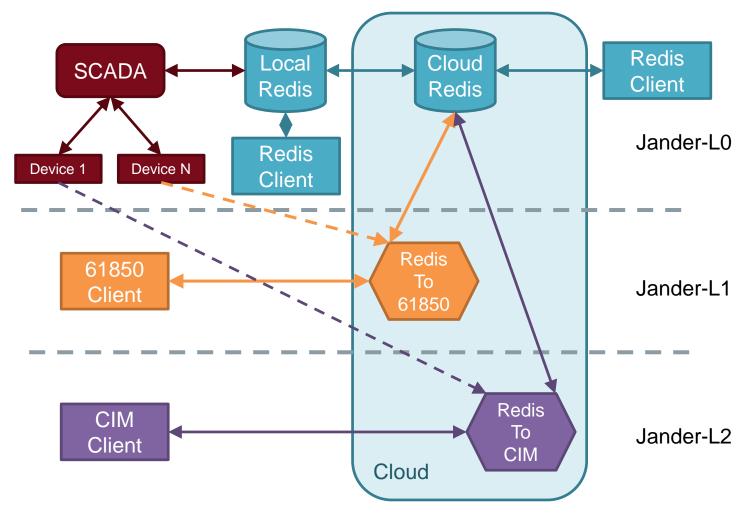
Coupling Co-Simulation and Real-Time Hardware-in-the-Loop (HIL)

- Cyber-physical (multi-domain) approach for analysing and validating smart grids on system level
- Improved validation and testing methods with focus on co-simulation & HIL

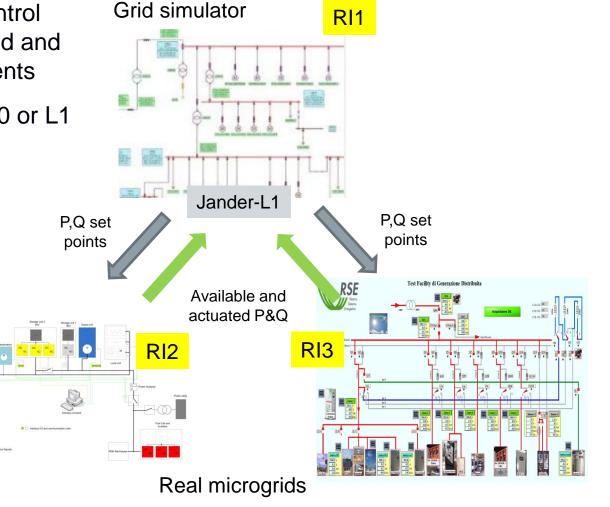
Connecting Smart Grid Labs Real-Time Data Exchange via JaNDER

- Joint Test Facility for Smart Energy Networks with DER (JaNDER)
 - Result from FP7 DERri
 - Proof-of-concept of real-time data exchange between lab facilities
- Several shortcomings of DERri JaNDER version (addressed in ERIGrid)
 - Installation effort (e.g., requirement for firewall changes)
 - Lack of official multi-lab test cases in DERri
 - No context information beyond raw real-time data
- Virtual Research Infrastructure (VRI)
 - Integration of all ERIGrid participating labs
 - Virtually integrated pan-European smart grid research infrastructure

© The ERIGrid Consortium


EU H2020 Programme GA No. 654113

Connecting Smart Grid Labs JaNDER Architecture



Connecting Smart Grid Labs JaNDER Example

RS485 ModBus

- Coordinated voltage control between a simulated grid and two physical grid segments
- Using JaNDER levels L0 or L1

