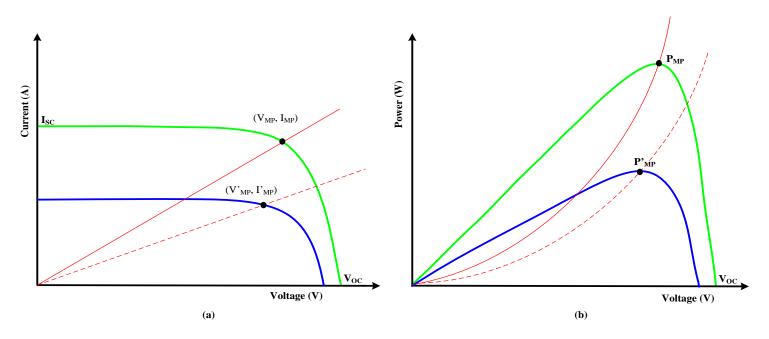


NA4.2 – Overview of methods for Maximum Power Point Tracking in PVs

Evangelos Rikos


Centre for Renewable Energy Sources and Saving

Dept. of Photovoltaics and Distributed Generation

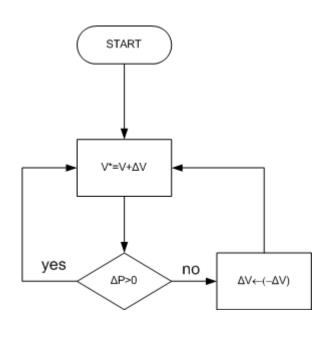
Why is it important to find the MPP?

I-V (a) and P-V (b) characteristics of a PV system

The above diagrams depict a qualitative behaviour of the PV current and power as a function of the DC voltage, for two different irradiation levels. In conjunction, different load curves (red lines) are depicted

Methods of MPPT

- > Symmetric PV modules' operation (i.e. same I-V characteristic):
 - Perturb & Observe, P&O
 - Constant voltage and current
 - Pilot Cell
 - Incremental conductance
 - Parasitic capacitance
- Asymmetrical operation (i.e. partial shading)
 - Use of more sophisticated techniques based on mathematical algorithms


Method "Perturb and Observe-P&O"

Operation principle

Power (W) P'mp ΔΡ ΔV, Voltage (V)

P&O method's flowchart

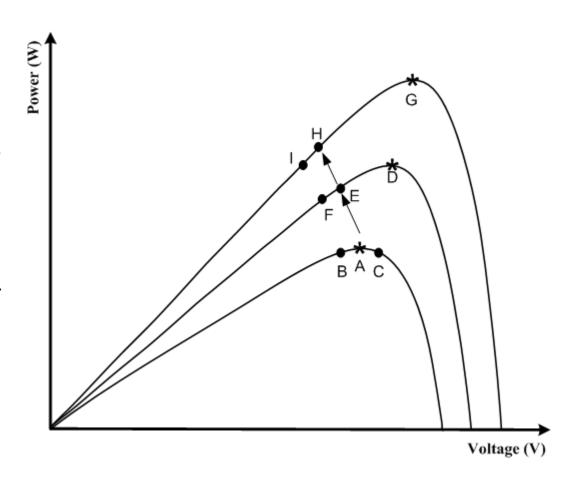
Method P&O (cont'd)

Advantages:

♠ Easy to implement ⇒ most commonly used MPPT method

Disadvantages:

- Difficult or even impossible to track the MPP for reduced irradiance due to the almost flattened P-V curve
- Incapability of stabilising the operating point and appearance of some oscillations around the MPP
- Abnormal behaviour in very fast transients of the solar irradiance due to e.g. scattered clouds

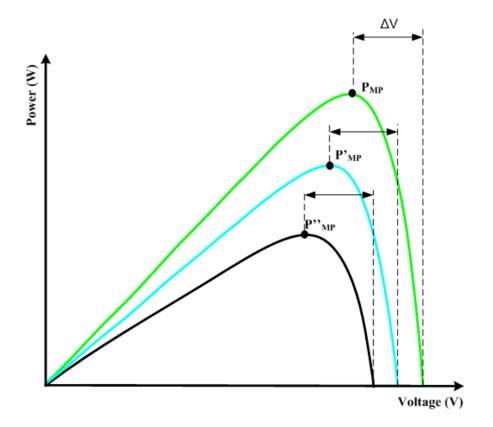

Method P&O (cont'd)

Problem of fast changing solar irradiance

When the P-V curve changes rapidly, the MPPT algorithm misinterprets points E and H as MPPs because they are higher than A.

The inaccuracy is corrected when the curve is stabilised for enough time to allow the system to detect the true MPP, namely D or G

Improvements in the P&O technique



 Using a stand-by function: when the voltage deviation sign changes many times in a row, the controller assumes that the MPP has been reached and it temporarily stops perturbations. This reduces the oscillations around the MPP. However, the transient response of this variant worsens

• Measurement of power for a point P₁, V₁. Change to voltage V₂ measurement of P₂. Restoration of voltage back to V₁ and measurement of P'₁. By comparing the power P'₁ to P₁ it can be inferred if there is an irradiance variation. The disadvantage is that the algorithm becomes slower

In practice the ratio of V_{mpp} over V_{oc} is almost constant or it follows a very predictable profile


$$\frac{V_{MPP}}{V_{OC}} \cong K < 1$$

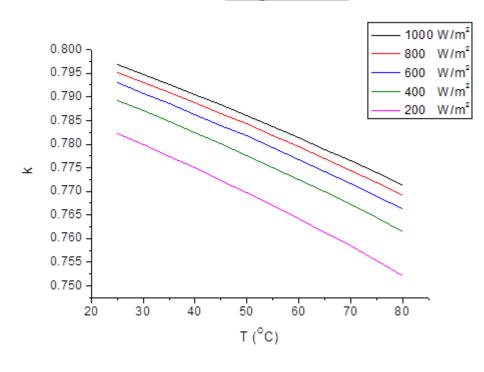
K ranges between 0.7 and 0.8

Method of constant voltage

flowchart

Advantages-disadvantages

- Implementation simplicity
- Not easy to estimate the optimum K ratio


Variation of K with temperature and irradiance

PV module data

Manufactur er	Sharp
Model	NUS5E3E /NU185E1-185 W
Туре	Mono-crystaline silicon
V _{mp} , V _{oc}	24.0 και 30.4V
I _{mp} , I _{sc}	7.76 και 8.54Α

Diagram of k

Variant of constant voltage's technique

Constant current method:

- It calculates I_{mp} from the short-circuit current I_{sc}
- It uses a parallel switch to temporarily short circuit the panel in order to measure I_{sc}
- It is less advantageous compared to the constant voltage method because it is nearly impossible to obtain a perfect short-circuit due to resistances in cables, switch etc.

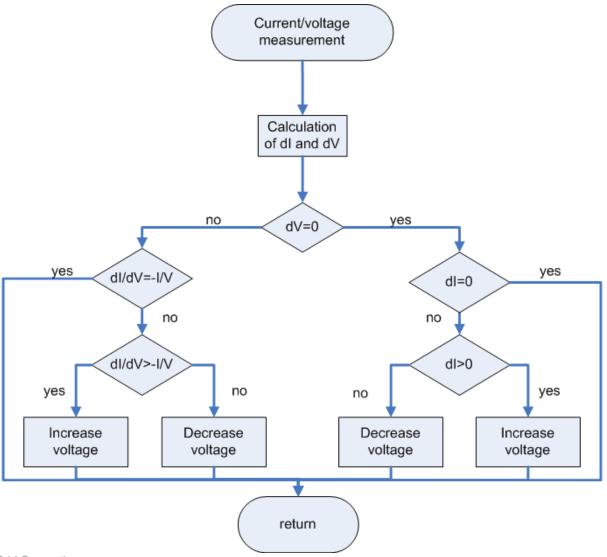
Use of reference cell

- Variation of the constant current/voltage method
- It makes use of a small reference cell for the calculation of the I_{mp} or V_{oc} value.
- Advantage: Reduction of energy loss in the main PV due to disconnection or short circuit actions
- Sestimation of an accurate k value is still a problem
- The reference cell must have the exact same characteristics with the main PV
- Calibration of the reference cell increases the cost of the system

Method of incremental conductance (INC)

Operating principle:

Calculation of power derivative as a function of voltage


$$\frac{dP}{dV} = 0 \Longrightarrow -\frac{I}{V} = \frac{dI}{dV}$$

This is interpreted as follows:

<u>Left of MPP</u>	<u>MPP</u>	Right of MPP
$\left \frac{dI}{dV} > -\frac{I}{V}; \left(\frac{dP}{dV} > 0 \right) \right $	$\frac{dI}{dV} = -\frac{I}{V}; \left(\frac{dP}{dV} = 0\right)$	$\frac{dI}{dV} < -\frac{I}{V}; \left(\frac{dP}{dV} < 0\right)$

INC flowchart

Comparison of INC with P&O

NC is capable of detecting the direction of a disturbance. Hence, the method is more stable when solar irradiance varies rapidly.

In addition, once it tracks the MPP it does not oscillate around it

Method of parasitic capacitance

- Variation of the INC method
- It takes into account the cell's parasitic capacitance
- Mathematical model:

$$I = I_L - I_O \left[\exp \left(\frac{V_P + R_S I}{a} \right) - 1 \right] + C_p \frac{dv_p}{dt}$$

$$\frac{dF(v_p)}{dv_p} + C_p \left(\frac{\dot{V}}{V} + \frac{\ddot{V}}{\dot{V}}\right) + F(v_p) = 0$$

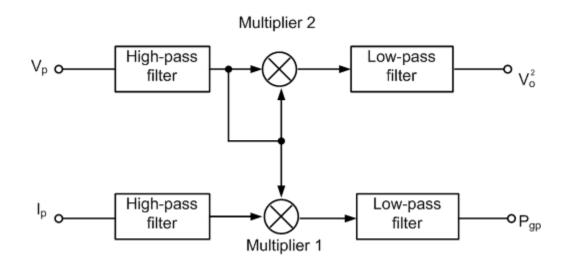
Differential conductance

Method of parasitic capacitance (cont'd)

Calculation of differential conductance:

$$g_{P} = \frac{P_{GP}}{V_{o}^{2}} = \frac{\frac{1}{2} \sum_{n=1}^{\infty} \left[a_{n}^{i} \cdot a_{n}^{\nu} + b_{n}^{i} \cdot b_{n}^{\nu} \right]}{\frac{1}{2} \sum_{n=1}^{\infty} \left[\left(a_{n}^{\nu} \right)^{2} + \left(b_{n}^{\nu} \right)^{2} \right]}$$

where: P_{GP} is the average ripple power

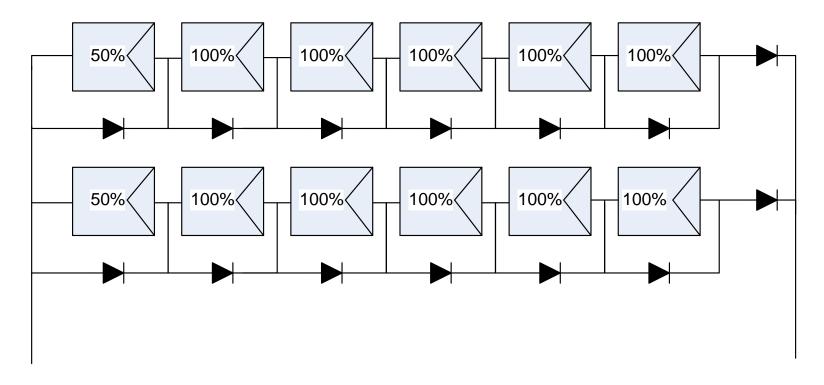

V_o is the amplitude of the ripple voltage

 $\alpha_n^i, \alpha_n^{\upsilon}, b_n^i, b_n^{\upsilon}$ Fourier coefficient for voltage and current

Method of parasitic capacitance (cont'd)

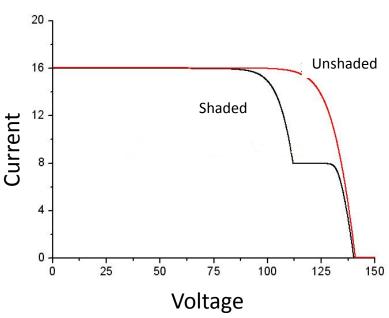
Block diagram for the implementation of the parasitic capacitance method:

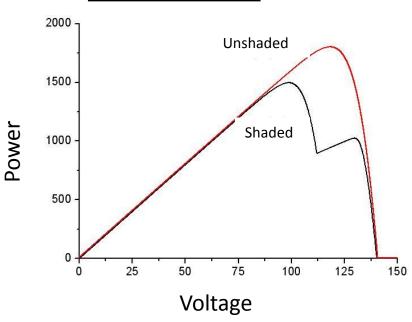
Algorithms based on the PV model



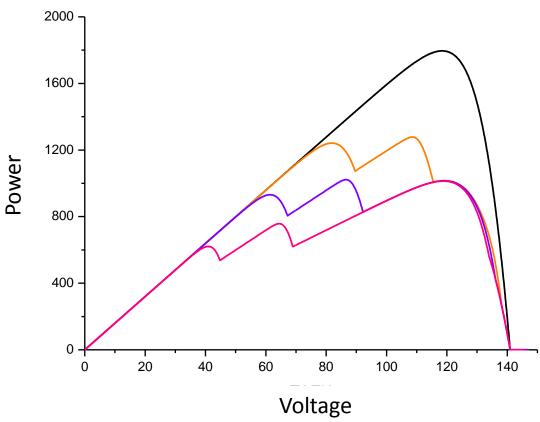
- Use of the current equation for a PV is more accurate
- Direct calculation of the MPP
- Comprehensive knowledge of the model's parameters is required
- Irradiance and temperature measurement
- Uncertainties in the parameters values and measured signals
- Large divergence in the parameters' values even for PV modules of the same type
- Increases the cost because of the sensors

Asymmetrical operation-Partial shading


The system below consists of two parallel strings. Two of the modules (one in each string) are partially shaded to 50% of the maximum irradiance


Asymmetrical operation-Partial shading (cont'd)

I-V characteristic


P-V characteristic

Asymmetrical operation-Partial shading (cont'd)

P-V characteristic for multiple shaded modules

Problems with using conventional MPPTs under partial shading

- Inability to detect global MPP
- The system stabilises at local MPPs
- Use of sophisticate mathematical algorithms to track the global MPP
- Drawback: Implementation complexity and power variation in a wide range → better for small systems

References

- [1] D. P. Hohm, M. E. Ropp, "Comparative study of Maximum Power Point Tracking Algorithms", Progr. Photovolt: Res. Appl., 2003; 11; pp. 47-62.
- [2] Hussein K. H., Zhao G., "Maximum photovoltaic power tracking: an algorithm for rapidly changing atmospheric conditions", IEE proceeding of Generation, Transmission and Distribution, 1995, vol. 142, no. 1, pp. 59-64.
- [3] Kim Y., Jo H., Kim D., "A new peak power tracker for cost-effective photovoltaic power systems" IEEE proceedings 1996, vol. 3, no. 1, pp.1673-1678.
- [4] Kawamura T. et al., "Analysis of MPPT characteristics in photovoltaic power systems", Solar Energy Materials and Solar Cells, Proceedings of the 1996 9th International Photovoltaic Science and Engineering Conference, PVSEC-9, 1997, vol. 47, no. 14, pp. 155-165.
- [5] Enslin J. H. R., Wolf M., Swiegers W., "Integrated photovoltaic maximum power point tracking converter", IEEE Transactions on Industrial Electronics, 1997, vol. 44, no. 6, pp. 769-773.
- [6] N. A. Ahmed, M. Miyatake, "A novel maximum power point tracking for photovoltaic applications under partially shaded insolation conditions" Electric Power Systems Research 78 (2008) 777–784.