

# NA4.2 – Overview of methods for HW Simulation for PVs

**Evangelos Rikos** 

Centre for Renewable Energy Sources and Saving

Dept. of Photovoltaics and Distributed Generation



#### Use of Hardware PV simulators



- Efficiency measurement of PV inverters
- Measurements of harmonics injection to the AC grid
- Measurements of the DC current injection to the AC grid
- Evaluation of the anti-islanding performance
- Evaluation of the protection performance
- Evaluation of the MPPT performance



## Test requirements for grid-connected PV inverters-why PV simulators



- Testing usually under steady-state conditions
- Variation of solar irradiance and ambient temperature
- Specific tests that require dynamic variations of irrariance on the PVs
- Massive measurement data
- Limited availability of time
- Different characteristics for different inverters



#### Use of real PV modules



- Exact representation of the real system's behaviour
- The operating conditions are not controllable and usually unpredictable
- The PV array may not meet the nominal current/voltage requirements for the test
- A large surface must be available for their installation
- The testing process is feasible only when conditions allow it (e.g. during the day)
- It is almost impossible to run several experiments in short time





## Power converters that operate as PV panels producing an I-V curve similar to PVs

Benefits:

- Controllable test conditions with regard to irradiance and temperature
- Flexibility in the use of the PV models. Use of different types of modules.
- Ability to rapidly vary solar irradiance
- Coverage of a wide voltage/current range



### Basic structure of a PV simulator



AC power supply
Power converter stage
Control stage
Voltage and/or current control in order to behave as a PV



### PV simulators classification



#### Power:

- Small simulators (up to some tenths of Watt)
- Large simulators (up to 100kW)

#### Topology:

- Simulators based on the diode characteristic (small power levels)
- Simulators based on linear electronic regulators (e.g. bipolar transistors)
- Simulators based on Switch-Mode Power Supplies



#### **Diode-base simulators**



- Use of a combination of diodes in order to approximate the I-V characteristic
- Advantage: Good approximation of the operation under dynamic conditions
- Disadvantages:
  - Increased power losses
  - Inflexible I-V curves
  - Sensitivity to temperature variations





### Switch-mode simulators



- •Use of a switch-mode converter
- •AC power supply
- •Advantages:
  - Low losses
  - Flexibility in the operating behaviour

Disadvantages:

- Usually poor dynamic response
- Potential Electromagnetic Interference (EMI) problems





# Dynamic response of SMPS simulators



#### Ideal response to MPPT

#### Actual response to MPPT-Oscillation









Improvements:

- Use of a small output capacitor
  - However, too small a capacitor can lead to voltage ripples at the DC side
- Use of a parallel discharging circuit for the rapid voltage reduction
  - The power of the parallel circuit should be carefully selected
- Use of proper voltage/current control
  - Fast acting control is necessary



## Switch-mode simulators (cont'd)



- Block diagram of a PV simulator that uses two controllers for voltage and current
- Voltage and current measurement and calculation of reference values
- Implementation by means of a DSP





#### Linear-mode simulators



 They combine an array of transistors in linear mode

• DC power supply (e.g. from a rectifier)

Advantages:

- Flexible operating ۲ characteristics
- Improved dynamic • response

**Disadvantages:** 

Increased losses





### Control of the simulator



- Analog circuits
  - Reproduction of reference I-V:
    - With the use of a diode
    - With the use of a reference cell
  - 🖏 Fast response
  - Noise sensitivity
  - Limited flexibility



#### Control of the simulator



- Digital circuits(DSP or microcontroller)
  - Reproduction of the reference I-V:
    - Mathematical calculation of the PV model
    - Use of look-up tables
  - Slower response depending on the code's size
  - 🖏 Noise immunity
  - Rexibility in terms of parameters variability
  - Complex control techniques are feasible
  - $\overset{\otimes}{\sim}$  Communication with PC and other devices



#### References



- 1. O.-M. Midtgård, "A simple photovoltaic simulator for testing of power electronics" European Conference on Power Electronics and Applications, 2007,2-5 Sept. 2007, pp.1 10
- H. Haeberlin, L. Borgna, D. Gfeller, P. Schaerf and U. Zwahlen, "Development of a fully automated PV array simulator of 100kW", 23<sup>rd</sup> European Photovoltaic Solar Energy Conference, Valencia, Spain, Sept. 2008
- 3. W. Deprez, A. Woyte, R. Belmans, J. Nijs, "Modular DSP controlled photovoltaic array simulator", 17<sup>th</sup> European Photovoltaic Solar Energy Conference, Munich, Germany, 22-26 Sept., 2001
- H. Nagayoshi', S. Orio, Y. Kono, and H. Nakajima, "Novel PV array module I-V curve simulator circuit", Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002, 19-24 May 2002, pp. 1535 - 1538

