

The impact of power quality on measurements

Dr. Andrew Roscoe

Simple measures : length

Simple measures and accuracy

Transferring standards

University of

- The standard mass (the IPK, International Prototype Kilogram) is kept in France.
- In 1889, 40 copies were made. In the UK, NPL keeps copy #18.
- All the copies can be periodically checked against the IPK
- They are ALL measurably drifting against each other!

Transferring standards and traceability

University of

Example of traceability : Voltage (1)

accurate to 1 part in 10⁸ (0.01 ppm) using Josephson junctions

0.01 ppm

Calibration accuracies offered by NPL

Voltage Level	Uncertainty (95 % confidence level)
1.0 V Electronic	0.14 ppm
1.018 V Electronic	0.14 ppm
1.018 V Standard Cell	0.09 ppm
10 V Electronic	0.02 ppm

0.02-0.2 ppm

1-2 ppm £5000 each

Example of traceability : Voltage (2)

Stability

Stability for a given period of time is defined as the output uncertainty minus the calibration uncertainty at the 99% Confidence Level. When the output voltage is characterized by a regression model, stability is given by the following equation:

$$\left| b\left(\frac{P}{365}\right) + 2.65S_1 \sqrt{\left[\frac{S_{TR}}{S_1}\right]^2 + \left(\frac{1}{n}\right) + \left[\frac{\left(\overline{x} + P - x_1\right)^2}{\Sigma\left(x_1 - \overline{x}\right)^2}\right]} \right|^2}$$

where b = slope of regression in ppm/year

S1 = standard deviation about the regression (SDEV)

Sra = SDEV of data filtered with 7-day moving average filter (MAF)

P = Period of time under consideration in days

 \overline{x} = mean time for regession data

n = 180 period (typically 2 meassurements per day)

Xj = jth period

X1 = time at beginning of data

Each data point for the computation of the regression parameters is the average voltage of 50 readings taken in a 50-second measurement period.

Stability for the 732B outputs at 23 ±1°C is specified as follows

Output Voltage		Stability (± ppm)	91:
	30 Days	90 Days	1 Year
10V	0.3	0.8	2.0
1.018V	0.8	NA	NA

Noise at the Output Terminals

Output noise is specified for both day-to-day observations and for short-term observations. The former is given by the standard deviation of a 90-day regression model. The latter is in terms of its rms value in a bandwidth as follows:

Output Voltage	S ₁ (± ppm)	S _{ra} (± ppm)	Noise (0.01 Hz to 10 Hz (± ppm rms)
10V	0.068	0.05	0.06
1.018V	0.1	NA	0.03

Output Current and Limits

Output Voltage	Output Current Limit	Output Impedance
10V	12 mA (Note)	≤1 mΩ
1.018V	20 pA	≤ 1 kΩ

Example of traceability : Voltage (3)

Agilent 34410A, £850 .0030 % DC2, 0.06% ACV

Agilent 3401A, £300 0.02% DCV ,0.5% ACV

DCA 1% + 3 ACA 1.5% + 3 Resistance 0.9% + 1

2% + 3 (500Hz-1kHz)

The power system we are used to:

Then add point-point and multi-point HVDC

Problems for measurements

- Lower system inertia
 - Frequency is never "nominal"
 - ROCOF levels are rising
- Harmonics
- Inter-harmonics
- Unbalance, Faults
- Inaccessibility, Voltage, Weather
- "Loose" standards
- How do we calibrate?
 - Meters (wideband)
 - Instrumentation
 - On-site? Off-site?
 - How does we ensure robust measurement in "real world" conditions? Can we?

Dynamic harmonic measurement traceability Strathclyde

DC is simple ?

University of Strathclyde

What's so hard about AC measurements?

Aliasing

University of

27th August 2013 ...

27 August 2013 Last updated at 13:41

Power outage in Glasgow after worker hits live cable

The worker was injured after making contact with a live cable on a building site in Allan Glen Place

A worker has been injured after making contact with a live cable at a building site in Glasgow city centre.

Police Scotland said there was a short power outage in the north of the city following the incident at Allen Glen Place at about 12:00 on Tuesday.

The injured man was taken to nearby Glasgow Royal Infirmary. Details of his condition are not yet known.

Emergency services remain at the scene. The incident has been reported to the Health and Safety Executive.

Scottish Power officials are also at the scene.

It is understood that people in the area reported hearing a "loud bang and explosion" when the incident occurred.

The power supply was restored a short time later.

B C O Sign in News Sport Weather Player TV NEWS GLASGOW & WEST SCOTLAND Anno Nowe World UK England & Instand Social Wates Business Politics Health Education Sci Social Politics Social Politics Health Education Sci Social Politics 27 Argust 2013 Last updated at 13.41 March Social Politics Social Politics

Power outage in Glasgow after worker live cable

The worker was injured after making contact with a live cable on a building site in Allan Glen Place

A worker has been injured after making contact with a live cable at a building site in Glasgow city centre.

Police Scotland said there was a short power outage in the north of the city following the incident at Allen Glen Place at about 12:00 on Tuesday.

The injured man was taken to nearby Glasgow Royal Infirmary. Detail: his condition are not yet known.

Emergency services remain at the scene. The incident has been repc to the Health and Safety Executive.

Scottish Power officials are also at the scene

It is understood that people in the area reported hearing a "loud bang and explosion" when the incident occurred.

The power supply was restored a short time later.

27th August 2013!

Figure 5-1 : Linear interpolation to estimate the time of a zero crossing

Frequency error using zero-crossing algorithm due to interpolation errors only, at only one end of the cycle, at different sample rates, versus the time offset of the first sample from the actual zero crossing

Missing information with zero crossings

University of Strathcly

de

PLLs

AC Power system measurements use small numbers of cycles!

- 1) Measurement timeframe >> Fundamental period
 - e.g. Radio-frequency measurements

- 2) Measurement timeframe not >> Fundamental period
 - e.g. Power system measurements over <20 cycles

Single-cycle nominal (50Hz) windowing: Signal at nominal 50Hz

University of

Single-cycle nominal (50Hz) windowing: Signal at 52Hz

University of

Single-cycle nominal (50Hz) windowing: Signal at 47Hz

University of

Single-cycle nominal (50Hz) windowing: Signal at 47Hz

[<u>RMS_Example_Animation.mp4</u>]

Fourier-based algorithms: e.g. the "Reference" algorithm from C37.118.1

Single-phase section

How a single-cycle "boxcar" filter works

Single cycle boxcar window/filter response : Fadc = 45.4545kHz, f0 = 45.4545Hz

2 cascaded single-cycle boxcars

Case example : Phasor Measurement Units

Unbalance, Interharmonics, Harmonics, Frequency ramp

[Arbiter model 1133A]

University of

Strathclyde

[SEL 451]

	Max TVE	Max Freq. Error	Max ROCOF Error
	(70)		(112/3)
P Basic+	0.35	0.2432	24.596
P TickTock	0.34	0.1706	16.875
M Basic+	0.11	0.0210	2.823
M TickTock	0.05	0.0013	0.167

Single-phase RMS and Fundamental Measurement Strathcly Clean sinusoids at 50.0 Hz

Single-phase RMS and Fundamental Measurement Strathcly Clean sinusoids at 49.5 Hz

Single-phase RMS and Fundamental Measurement Strathclyde EN50160 Harmonics (8% THD) at 50.0 Hz

Single-phase RMS and Fundamental Measurement Strathcly EN50160 Harmonics (8% THD) at 50.0 Hz

Single-phase RMS and Fundamental Measurement Strathclyde EN50160 Harmonics (8% THD) at 49.5 Hz

Single-phase RMS and Fundamental Measurement Strathclyde Switching at 6475 Hz, fundamental at 49.5 Hz

Poor measurement algorithms (1)

31 Watts ! ?

Measure the power consumption of an opencircuit transformer, using the newest laboratory equipment

Poor measurement algorithms (2)

Error ~200-300% !!

University of Strathclyde

8 Watts

▶ II	Power 🖂	≥ 2012-03·	-12, 12:00
¢۲	1		
		min	max
Р	0.009 ***	0.009	0.009
S	0.054 KVA	0.054	0.054
Q ¢	0.046 ^{kvar}	0.045	0.046

9 Watts

31 Watts

Poor measurement algorithms (3)

How accurate is your electricity meter?

+2.5% and -3.5% for UK nationally approved meters. *But what about harmonics?!*

Interharmonics and flicker

[http://www.metalravne.com/en/]

Electric Arc Furnace

Dataset

Dataset from 110kV voltage bus (20kV is worse!)

Data courtesy of the University of Ljubljana (Prof. Igor Papič Papič, Igor <u>Igor Papic@fe.uni-lj.si</u> & Dr. Boštjan Blažič) via Roberto Langella (Roberto Langella <u>roberto.langella@unina2.it</u>) at the 2nd University of Naples

20 minute profile with Arc furnace turn-on (Ladle furnace currents zero)

University of

University of Strathclyde 110kV, 100 seconds in

Something turns on at *t*=42s, but it is not the Arc Furnace or Ladle Furnace on the known 20kV bus! (110kV quality is comparable to 20kV)

40

University of Strathclyde

40

Flicker

University of Strathclyde

RavnelII_2006_03_31_220000_110kV_subset_2200_to_3400_harmonic_analysis.mp4

Frequency from different algorithms: 110kV connection to steelworks

University of

ROCOF from different algorithms: 110kV connection to steelworks

University of

Implications for Control and Billing ?!!

