

An introduction to measurement uncertainty

Ian Smith 25 January 2018

Data Science
National Physical Laboratory, UK

Outline

- Introduction
- Main stages of uncertainty evaluation
- Formulation example
- GUM uncertainty framework
- Constructing an uncertainty budget
- Further concepts
- Summary
- Useful links

Introduction

- Purpose of measurement is to provide information about a quantity of interest (the measurand)
- No measurement is perfect
- Information about the measurand is incomplete
- As a result there is uncertainty in knowing the value of the measurand
- Only possible to state the probability that the value lies within a given interval
- Emphasise strongly probabilistic basis for uncertainty evaluation

Where do uncertainties come from?

- The measuring system
 - Calibration, resolution, drift, ageing, ...
- The item being measured
 - Stability, homogeneity, ...
- The operator
- The environment
 - Temperature, air pressure, humidity, ...

Why are uncertainties important?

- To quantify the quality of a measured value
- To compare different measured values
 E.g., from different measuring systems

- To compare a measured value with theory
- To compare a measured value with a tolerance
 E.g., in conformity assessment

Definitions

- "a non-negative parameter characterizing the dispersion of quantity values being attributed to a measurand, based on the information used" (VIM)
- "a parameter, associated with the result of a measurement, that characterizes the dispersion of the values that could reasonably be attributed to the measurand" (GUM)
- Different ways of reporting measurement uncertainty
 - Standard uncertainty
 - Expanded uncertainty
 - Coverage interval for a stated coverage probability

Reporting a measurement result

 E.g., as an interval with the uncertainty stated for a 95 % level of confidence ("95 % coverage interval")

Relative standard uncertainties are also used

Reporting a measurement result

- Primary document regarding measurement uncertainty
- GUM provides a framework for uncertainty evaluation
- "Other analytic or numerical methods" (GUM Clause G.1.5) where appropriate
- A measurement model is central to consideration
- Probability is central to consideration

Main stages of uncertainty evaluation

- Main stages of uncertainty evaluation
 - Formulation stage (metrological)
 - Calculation stages (computational) comprising propagation and summarising

Formulation stage

- Decide what is the measurand (output quantity)
 - the quantity intended to be measured

Y

- Decide what are the input quantities on which the measurand depends \(\chi_1, \chi_2, ..., \chi_N\)
 - indication quantities, applied corrections, calibration quantities (of artefacts, instruments), etc.
- Decide the relationship between the measurand and the input quantities
 - the measurement model

$$Y = f(X_1, X_2, ..., X_N)$$

Gather information/knowledge about the input quantities

Formulation stage

- Metrologist derives measurement model relating input and output quantities
 - some general principles
 - usually discipline-specific
- Metrologist uses available knowledge to characterise input quantities by probability density functions
 - approaches available

Probability density functions (PDFs)

- Value of a quantity generally not known exactly
- PDF summarises what is known about a quantity in a probabilistic sense
- Most commonly encountered PDFs
 - Rectangular (uniform) distribution
 - Gaussian (normal) distribution
 - t-distribution
- Many others

Rectangular (uniform) distribution

- Value of quantity expected to lie within a certain interval with equal probability
- Defined in terms of end-points a and b of the interval R(a, b)

Gaussian (normal) distribution

- Widely encountered distribution
- Value of quantity has high probability of lying close to a "central" value and low probability of lying far from "central" value
- Defined in terms of mean μ and standard deviation σ N(μ , σ^2)

t-distribution

- Arises when information about a quantity takes the form of repeated indication values drawn from a Gaussian distribution
- Defined in terms of "central" value μ , scale s and degrees of freedom ν

$$t_{\nu}(\mu, s^2)$$

t-distribution

Measurement model

- Expresses the output quantity explicitly as a function of the input quantities
- Rule for delivering the output quantity given the input quantities

PDFs for input quantities

- Repeated indication values of the input quantity
 - Extract summary parameters (e.g., average, standard deviation associated with average)
 - Use PDF having these parameters
 - Type A evaluation
- Other (non-statistical) information relating to an input quantity
 - Use appropriate PDF based on historical data, supplier's statements, expert judgment, etc.
 - Type B evaluation

Calculation stage

Given the measurement model and the PDFs for the input quantities

Derive the PDF for the output quantity

Propagation

Obtain from the PDF summary information about the output quantity: estimate and associated standard uncertainty, coverage interval

Summarising

Propagation of distributions

Obtaining summary information

- Expectation of Y
 - \rightarrow estimate *y* of Y
- Standard deviation of Y
 - \rightarrow standard uncertainty u(y) associated with y
- Probability density function for Y
 - → coverage interval corresponding to coverage probability
 p

Approaches to uncertainty evaluation

- GUM uncertainty framework
- "Other analytical or numerical methods": GUM-compliant

Why these stages?

- All metrological decisions in formulation stage
 - Measurement model
 - PDFs for the input quantities
- Calculation stage is then a defined problem
 - Mathematical
 - Statistical
 - Computational

Example of formulation: How long is a piece of string?

- Task: measure the length of a piece of string
- Measurement is made with a steel tape
- Output quantity (measurand): string length
- Input quantities?
- Measurement model?

Model and input quantities

String length = Measured string length (1)

- + Steel tape length correction (2)
- + String length correction (3)
- + Measurement procedure correction (4)

(1) Measured string length

Measured string length = Average of a number of repeated indication values

(2) Steel tape length correction

Steel tape length correction =

Deviation due to tape calibration imperfections

- + Deviation due to stretching of tape
- + Deviation due to bending of tape
- + Deviation due to tape thermal expansion

(3) String length correction

String length correction =

Deviation due to string departing from straight line

+ Deviation as a result of shrinking of string

(4) Measurement procedure correction

Measurement procedure correction =

Deviation due to inability to align ends of steel tape and string due to fraying of the string ends

- Deviation due to steel tape and string not parallel
- + Deviation due to interpolation of graduations on the steel tape to provide an indication value

After model in place

- Characterise quantity representing each term in the measurement model by a PDF
- Examples:
 - Repeated indication values: use *t*-distribution
 - Deviation due to interpolation of graduations: use rectangular distribution

GUM uncertainty framework

- Propagates estimates and standard uncertainties through measurement model
 - Law of propagation of uncertainty (LPU)
 - Only makes use of expectations and standard deviations of input quantities (and covariances and degrees of freedom where appropriate)
- Characterises the output quantity by a Gaussian distribution (or t-distribution)
 - Central limit theorem (CLT)
 - Uses this distribution to form a coverage interval

$$Y = f(X)$$
 with X_1, \dots, X_N independent

Propagate estimates x_i through measurement model

$$y = f(x)$$

• Propagate uncertainties $u(x_i)$ through linearised measurement model

$$u^{2}(y) = \sum_{i=1}^{N} c_{i}^{2} u^{2}(x_{i}), \qquad c_{i} = \frac{\partial f}{\partial X_{i}} \Big|_{X=x}$$

$$y \approx E(Y), \qquad u^2(y) \approx V(Y)$$

GUM uncertainty framework for general measurement model

$$Y = f(X)$$
 with $X_1, ..., X_N$ independent

Equivalent form

$$u^{2}(y) = \sum_{i=1}^{N} c_{i}^{2} u^{2}(x_{i}) = \sum_{i=1}^{N} u_{i}^{2}(y)$$

Here,

$$u_i(y) = |c_i|u(x_i)$$

quantifies the contribution of the *i*th input quantity to u(y)

Evaluating a coverage region

- Use Welch-Satterthwaite formula to evaluate effective degrees of freedom $v_{\rm eff}$ assumes input quantities are independent
- For $v_{\text{eff}} = \infty$, characterise (Y y)/u(y) by the standard Gaussian distribution N(0, 1)
- For $v_{\text{eff}} < \infty$, characterise (Y y)/u(y) by the *t*-distribution with v_{eff} degrees of freedom

Welch-Satterthwaite formula

The Welch-Satterthwaite formula

$$\frac{u^{4}(y)}{v_{\text{eff}}} = \sum_{i=1}^{N} \frac{u_{i}^{4}(y)}{v_{i}}$$

or

$$v_{\text{eff}} = \frac{u^4(y)}{\sum_{i=1}^{N} u_i^4(y) / v_i}$$

 v_i = degrees of freedom attached to $u(x_i)$ v_{eff} = degrees of freedom attached to u(y)

Constructing an uncertainty budget

- Tabular format commonly used
- Spreadsheet-friendly

Source	Unc. Value	Dist.	k _i	c_i	$u_i(y)$	$ u_i$ or $ u_{ m eff}$
<i>X</i> ₁						
X_2						
<i>X</i> ₃						
X_4						
<i>X</i> ₅						
:						
X_N						
u(y)						
U						

Source	Unc. Value	Dist.	k_i	c _i	$u_i(y)$	v_i or $t_{\rm eff}$
X_1		ivisor				
X_2						
<i>X</i> ₃	Sensitivi	ty coe	fficient			
X_4						
X_5	C	ontribu	ution fro	m Dear	ees of fre	edom
:		<i>i</i> th qu	uantity	Dogi	003 01 110	Cuom
X_N						
u(y)						
U						

Source	Unc. Value	Dist.	k_i	c_i	$u_i(y)$	$ u_i$ or $ u_{ m eff}$
<i>X</i> ₁						
<i>X</i> ₂						
<i>X</i> ₃	Co		ed standa	ard		
X_4		unce	ertainty			
<i>X</i> ₅						
:		xpand icertai				
X_N	di	Tocital	I I I			
u(y)					1	
U						

- Divisor k_i
 - Converts the uncertainty value to a standard uncertainty (corresponding to a standard deviation)
- Sensitivity coefficient c_i
 - Converts the standard uncertainty to the units of the measurand

$$c_i = \frac{\partial f}{\partial X_i}$$
 evaluated at $X_j = x_j, j = 1, ..., N$

Contribution to combined standard uncertainty

$$u_i(y) = \frac{\text{Unc value for } i \text{th quantity}}{k_i} \times |c_i|$$

- Combined standard uncertainty u(y)
 - Calculated using law of propagation of uncertainty

$$u(y) = \sqrt{u_1^2(y) + \dots + u_N^2(y)}$$

- Coverage factor k (corresponding to coverage probability p)
 - Based on characterising output quantity by Gaussian or t-distribution
 - E.g., k=1.96 for p=0.95 and $\nu_{\rm eff}$ large
- Expanded uncertainty U

$$U = ku(y)$$

Further concepts

- Alternative approaches to calculation stage
 - Analytical methods (for simple cases only)
 - Monte Carlo method (GUM Supplement 1)
- Validation of GUM uncertainty framework
 - Using Monte Carlo method
- Multivariate models
 - More than one output quantity (GUM Supplement 2)
 - Coverage regions

Summary

- Probabilistic basis for uncertainty evaluation
- Measurement model relating input and output quantities
- GUM uncertainty framework

Useful links

- GUM (and accompanying documents)
 www.bipm.org/en/publications/guides/gum.html
- A beginner's guide to uncertainty of measurement www.npl.co.uk/publications/a-beginners-guide-to-uncertainty-inmeasurement
- UKAS document M3003
 www.ukas.com/download/publications/publications-relating-to-laboratory-accreditation/M3003_Ed3_final.pdf
- VIM: International Vocabulary of Metrology www.bipm.org/en/publications/guides/vim.html

Useful links

- NPL uncertainty guides
 www.npl.co.uk/publications/uncertainty-guide/
- Mathematics, Modelling & Simulation software www.npl.co.uk/science-technology/mathematics-modelling-andsimulation/products-and-services/software-downloads

Department for Business, Energy & Industrial Strategy

FUNDED BY BEIS

The National Physical Laboratory is operated by NPL Management Ltd, a wholly-owned company of the Department for Business, Energy and Industrial Strategy BEIS).