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Models in this talk

 Focus is on:

• Physics-driven models

• Computationally expensive models (e.g. finite 

element, finite volume, etc.)

• Black box software

• Propagation of uncertainties through a model

 Not considering model validation though there’s an 

overlap

 Not considering approximation errors: assumed 

minimal compared to other uncertainty sources.



Sources of uncertainty in models

 Need to either minimise or characterise all sources

 Physics 

• Multiphysics (e.g. losses) & nature of coupling

• Steady state vs frequency domain vs transient

 Boundary conditions

• Location of “infinity”

• Point source approximations

 Geometry

• Measurement uncertainty & spec vs true shape

• Quality of contact between regions



Sources of uncertainty in models

 Material properties

• Measurement uncertainty

• Use of literature values

• Temperature/field strength dependence

• Batch to batch variability

• Microstructure vs effective properties

• Spatial uniformity, stability over time



Assumptions

 You already have a tested & validated model.

• Uncertainties associated with model & software 

assumed to be minimised.

 You already have a joint distribution associated with your 

input quantities.

• See GUM for guidance if not.

 You know which output quantities require evaluation of 

uncertainties.

 You have an upper limit on the number of model 

evaluations that can be made. 



What’s the problem?

 Model inputs have associated uncertainties, so model 

results need associated uncertainties.

 Many models (e.g. FE, CFD, etc.) take a long time to run.

 Software often “black box” so can’t use analytical 

propagation of uncertainties.

 Computationally expensive so can’t carry out enough 

model evaluations for Monte Carlo sampling to be viable.

• A possible definition of “computationally expensive”: 

MC would take too long. 



Notation

 Model problem: random quantities, upper case.

 Model evaluations: values of random quantities, 

lower case.

 Samples: superscript to indicate sample number.

 N is always number of input quantities, K is always 

number of model evaluations. 
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Vocabulary

 A model uses values of input quantities x to generate 

values of output quantities y.

 A sampling method generates sample points x(k).

 A surrogate model uses training points x(k) and the 

associated function values y(k) , and possibly parameter 

values, to generate a new model that approximates the 

true function F. 



Toy problem

 Three input quantities

 X1 uniformly distributed on [0, 1]

 X2 triangular on [0,1] with a mode of 0.25

 X3 Gaussian, mean 0.5, standard deviation 0.01.

 Single output quantity.

 Y = X1X2 + X1X3 + X2X3 + sin(2 π X1) but treat as a black 

box.

 Mean of Y is 0.67, standard deviation 0.57.

 Can afford 20 evaluations of the model. 





Input screening & sensitivity

Screen inputs.

Redefine model and 

joint distribution if 

necessary. 



What?

 Define a set of values of the input quantities.

 Evaluate the model using those input quantity values.

 Process the results to get information about the sensitivity 

of the output quantities to the input quantities.

• Identify any insignficant input quantities.

 Redefine the model & distribution if necessary. 

 Extra computational cost. 

• Potential benefits in the long run.



Why?

 Can identify input quantities that are not important.

• Some uncertainty evaluation methods work better for 

fewer input quantities.

• Reduced model may run more quickly.

• Sampling over a reduced input space may be more 

likely to be space filling.

 Understanding sensitivity can provide insight into 

underpinning physics.



How?

 Design of experiments (DoE)

• Full factorial design

• Fractional factorial design

 “One at a time” designs

• Morris

 Sobol’ indices

 Focus on DoE here: information on other methods in the 

BPG. 



Design of Experiments

 Choose input quantity values to get as much information as 

possible about sensitivity.

 Full factorial designs select a fixed number of values  of 

each input and evaluate every possible combination of 

those values.

• Needs (number of values)N model evaluations.

 Fractional factorial designs reduce the number of model 

evaluations 

• Lose the ability to distinguish between some 

interactions. 



Full factorial design: two level 

design (effectively linear)

 Define a “high” and “low” value for each input quantity: 

xi
+, xi

-, i = 1, 2, …, N.

 Construct every possible set of input quantities 

containing one of the two values for each input 

quantity.

 Evaluate the model 2N times.

 To obtain the main effect for a given input xi, evaluate

 Similar expressions for interactions. 
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Significance

 Cannot decide whether to neglect an input quantity without 

a separate measure of importance.

• Least signifcant input may still be signifcant.

 Use the standard error: S/√(2N), where S is the standard 

deviation of the 2N output quantity values. 

• If an effect if less that the standard error, consider it to 

be insignificant

 NOTE: an input quantity with an insignificant main effect 

may be significant via interactions. 

• See BPG for an example. 



Toy example: input screening

X1 X2 X3 Y

0 0 0.48 0

0 0 0.52 0

0 1 0.48 0.48

0 1 0.52 0.52

1 0 0.48 0.48

1 0 0.52 0.52

1 1 0.48 1.96

1 1 0.52 2.04

 

Ὓ

Ѝ2ὔ
0.28 

X3 effect = [(0 + 0.52 + 0.52 + 2.04) - (0 + 0.48 + 0.48 + 1.96)]/4

=  0.04

< standard error.



Toy problem: all effects

Variable or 

interaction

Size of effect Significant?

X1 1

X2 1

X3 0.04

X1 X2 0.5

X1 X3 0.02

X2 X3 0.02

X1 X2 X3 0

X3 is not significant as a main effect or an interaction, so 

we can neglect its uncertainty and fix it at its mean value.

ὛЍ2ὔϳ 0.28 



New reduced model

Y(X1,X2) =

X1X2

+ 0.5 X1

+ 0.5 X2

+ sin(2 π X1)

ὣ= 0.66,    ί= 0.57 



Method choice

Choose a 

method. 



Choosing a method

 Can’t produce definitive advice that applies to all problems. 

 Set of points to consider: depends on what is most 

important for your application.

 Advice on comparing methods in the BPG.

 Methods are not necessarily mutually exclusive: may be 

able to use sampled points as training points for a 

surrogate model. 



Points to consider - 1

 Number of input & output quantities.

• More inputs → more parameters → more model 

evaluations, possible instability.

• Higher dimensional space → more model evaluations if 

quadrature required.

 Method complexity and software availability. 

• Some methods require understanding of high level 

mathematics to implement.

• Parameter estimation can require nonlinear 

optimisation. 

• May not matter if software is available. 



Points to consider - 2

 Prior knowledge of model and input quantities.

• Can improve efficiency if it is known which parts of 

the input space are important.

 Nature of joint distribution of inputs.

• Some methods struggle with input quantity 

covariance.

• Some methods will only work for some distributions. 

 Historical model evaluations & need for sample size 

flexibility.

• Stratified methods are not easy to adapt. 



Method choice: toy problem

RS SS LHS PC NN QRS GP

Small number of inputs - - - - - - -

Complex methods are OK - - - - - - -

No knowledge of function - - - - - -

Independent inputs - - - - - - -

Triangular distribution - - - - - -

No historical evaluations - - - - - - -

Final:



Comparison of methods

 Extra computational cost: use a simpler model if possible.

 Compare accuracy

• Requires reference results.

• Large scale random sampling.

• Literature values.

 Compare repeatability

• Repeat runs for the same sample sizes.

• Check sensitivity to training point & hyperparameter 

choices.

• “Leave one out” method.



Smart sampling methods: what

Generate samples 

x(1), x(2), …, x(K)

Evaluate model 

y(1)=F(x(1)), y(2)=F(x(2)), 

…, y(K)=F(x(K)) 

Process model 

evaluations to evaluate 

uncertainties 



Why?

 Smart sampling methods can outperform MC sampling for 

small sample sizes.

• Typically reduced sample to sample variability.

 Fairly simple to set up.

• No parameter determination.

 Usually few restrictions on model & distributions.

 Can usually handle any number of input quantities.



How?

 Random/Monte Carlo sampling 

• Not recommended for small sample sizes.

 Importance sampling

• Variance reduction method: not discussed here.

 Stratified sampling

 Latin hypercube sampling

 Polynomial chaos



Stratified sampling

 Use any knowledge of model and input quantities to 

increase sample density in key regions. 

 Subdivide the input space into non-overlapping 

regions of known probability pj, j = 1, 2, …, J.

 Sample Kj times within the jth region x(k,j), j = 1, 2, 

…, J, k = 1, 2,…, Kj.

 Process to get statistics. 
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Stratified sampling: how

X1 uniformly distributed on [0, 1]

X2 triangular on [0,1] with a mode of 0.25

Ten regions of equal probability defined.



Stratified sampling: how

ὣὛὛ= 0.47,    ίὛὛ= 0.56 



Stratified sampling: pros & cons

 Plus points: 

• uses available knowledge, 

• straightforward for independent inputs, 

• quite general.

 Minus points: 

• more difficult for correlated inputs, 

• best choice of subdivision not obvious in some cases.



Latin hypercube sampling

 Extension of stratified sampling

• Assumes no knowledge of function.

 Ensure the full range of each input quantity is sampled.

• Optimally space filling methods are available.



Latin hypercube sampling: how

 Divide each input quantity into K regions of equal 

probability and sample once within each region: 

xi
(k), i = 1, 2, …, N, k = 1, 2, …, K is in the kth region.

 Create N different permutations of the integers 1, 2, …, K. 

Let n[i,j] be the jth number in the ith permutation.

 Reorder the ith variable so that the first sample value is 

xi
(n[i,1]), the second is xi

(n[i,2]), and so on.

 Construct the vectors of input quantities as 

 Evaluate model and process as for random sampling.
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Latin hypercube sampling: how

Divide each axis into ten regions of equal probability.

Sample once within each region.



Latin hypercube sampling: how

Pair the points up randomly.

ὣὒὌὛ= 0.62,    ίὒὌὛ= 0.72 



Latin hypercube sampling: pros 

& cons

 Plus points: 

• simple, 

• general, 

• can impose correlation structures on input samples. 

 Minus points: 

• sample size not flexible. 



Polynomial chaos

 Has elements of sampling and elements of 

surrogate modelling.

 Idea is to 

• treat the model output quantities as 

random quantities directly,

• approximate model output as an expansion 

of polynomials Ψ of random variables ξ,

• evaluate expansion coefficients ai from 

model evaluations at well-chosen points,

• can derive statistics directly from these 

coefficients.
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Coefficients and evaluation

 Coefficients depend on integrals of the form

 where Ψk is the polynomial and w is a weighting function 

associated with the polynomial. 

 Need numerical quadrature to evaluate.

• Degree of polynomial & dimension of space affect 

number of evaluations required.

• Can use Gaussian quadrature for small N.

• Need to use sparse grid methods as N increases. 

 

ɰὭίύί
Ὑὔ

Ὂὀί Ὠί 



Polynomial chaos: pros & cons

 Plus points:

• Excellent convergence: get very good approximation 

from low order polynomials.

• Minimal processing.

• Can use as a surrogate.

 Minus points:

• Distribution restrictions: no correlation, non-standard 

distributions may suffer from poor convergence.

• Can get expensive for more input quantities.

• Quite mathematically involved, although software 

implementations are becoming more widespread. 



Surrogate models: what

Choose training points x(1), x(2), …, x(K)

Evaluate model y(1)=F(x(1)), y(2)=F(x(2)), …, 

y(K)=F(x(K)) 

Construct surrogate model ἧ ἑἦȟ‍ ἐἦ

Use surrogate to evaluate 

uncertainties



Why?

 Replace the computationally expensive model with a model 

that is quicker to run and that gives the same results.

• Can then use analytical methods or MC sampling for 

uncertainty evaluation.

 Replace the computationally expensive model with one 

that captures the random nature of the model solution 

directly.

• Polynomial chaos, as discussed previously.



How?

 Nearest neighbour interpolation.

 Response surface methodology.

 Gaussian process emulators.

 Extra knowledge: could have a known expected model and 

add some form of error term.

 Could use local approximations similar to FE approach. 



Training point selection

 Aim to fill input space and have more points where model 

output quantities are sensitive to input quantity values.

 Analytical methods.

Regular grids, sparse grid methods, Hammersley 

sampling….

 Random methods.

Sampling methods described previously.

 Can reuse historical model evaluations.



Nearest neighbour: how

 Each training point has an associated neighbourhood.

 If defining neighbourhoods first, define a non-overlapping 

subdivision of the input space and choose one training 

point in each region. 

 If choosing training points first, define neighbourhood of 

each point as the region that is closer to this training point 

than to any other training point (Voronoi polygons).

 To evaluate the surrogate at a new point, identify the 

neighbourhood in which the new point lies.

 New point has the function value of the training point 

associated with that volume.



Toy problem: nearest neighbour

from 104 randomly 

chosen points. 

Mean is area-

weighted average 

of training point 

values

ὣὔὔ= 0.62,    ίὔὔ= 0.63 

ὣὔὔ= 0.62,    ίὔὔ= 0.63 



Nearest neighbour: pros & cons

 Plus points

• Simple to set up, particularly if neighbourhoods defined 

first.

• Simple to understand.

 Minus points:

• Less accurate, particularly for rapidly varying models.

• Very sensitive to choice of training points.

• Needs care with scaling to define “nearest”.



Response surface methodology

 Fit a simple polynomial surface P(x) to the training points:

• Minimise

 Evaluate the polynomial as a surrogate for the main model. 

 Requires that K is large enough to uniquely define the 

coefficients of P.

 Best to normalise/rescale values before fitting.
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Toy example: QRSM

ὣὙὛὓ = 0.62,    ίὙὛὓ = 0.61 ɝώ 0.4 



Reponse surface methodology

 Plus points

• Fairly simple mathematically.

• Works well for a lot of models.

• No limits on distributions etc.

• Can extend to other forms if likely behaviour is 

known. 

 Minus points

• Requires more point evaluations and can become 

less stable for higher order or large values of N.

• QRS will not capture rapid changes in value & 

oscillatory behaviour.



Gaussian process emulation

 Approximate as a mean function β plus a zero-mean 

Gaussian process Z with covariance function C.

• Gaussian process is a set of random variables with any 

subset having a Gaussian joint pdf

 Needs definition of a covariance function for the joint pdfs.

• Common choice with useful smoothness properties:

 

ὣ ‍ἦ + ὤἦ 

ὅἦ,ἦᴂ = „2 exp
ὢὭ ὢὭ

ᴂ

ЉὭ

2ὔ

Ὥ= 1

 



GPE: How to

 Select a correlation function. 

 Identify suitable hyperparameter values.

• Typically involves nonlinear optimisation.

 If the mean function is parameterised, determine mean 

function parameters.

 Evaluate the covariance matrix for every pair of training 

points: Cij = C(x(i), x(j))

 Given a new point, use the correlation matrix and best fit 

parameters to evaluate the surrogate (and an error 

estimate). 



Toy example

ὣὋὖὉ= 0.66,    ίὋὖὉ= 0.57 



Gaussian process emulation: 

pros & cons

 Plus points

• Can capture very general behaviour.

• Provides error estimate at new points.

• Not that sensitive to training point values.

 Minus points

• Quite mathematically involved.

• Hyperparameter determination not always easy.



Multi-run toy model comparison

Ten samples of size ten for all methods.

Reference values mean 0.66, std dev 0.57 

Mean of 

sample 

means

Std dev of 

sample 

means

Mean of 

sample Std 

devs

Std dev of 

sample Std 

devs

Random 0.58 0.22 0.51 0.05

Stratified 0.56 0.14 0.54 0.05

Latin hyp 0.65 0.03 0.58 0.05

Nearest 0.64 0.04 0.57 0.05

QRSM 0.68 0.07 0.66 0.26

Gauss proc 0.66 0.006 0.57 0.005



Presenting results

Present 

results



Presenting results

 Summarising distributions (see GUM).

 Summarising sampling or surrogate models.

• Give enough information to reproduce procedure.

 Visualisation methods

• Ways to visualise repeatability.

• Ways to compare distributions.
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