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PMUs measurement are more challenging in Distribution compare to
Transmission networks!

* Mostly radial architecture

Very short lines

* Diversity among circuits and loads |
* Subject to more external influences

!
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Distribution Transformer
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PMUs measurement are more challenging in Distribution compare to
Transmission networks!

 Smaller voltage angle differences
 More noise in measurements

* Smaller X/R ratios (inductance/resistance of distribution
lines)

* Unbalanced three-phase systems

* Few PMU based monitoring are in the field, our knowledge
is scant!
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Our ERIGrid Project Objectives

Objective 1, Create D-PMU Data: built a time-synchronized and
scalable environment that includes multiple PMUs from different
vendors.

Objective 2, Transfer D-PMU Data: developed the setup of a virtual
communication layer that resembles the traffic and latencies inherent
to our network of virtual and physical PMUs’ data streams.

Objective 3, Analyse D-PMU Data: Use the developed HIL setup to
produce actual PMU data from different devices and analyze the data.
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Overall Architecture

The main objective is fault detection in power distribution networks using PMU
measurements in a real-time setup that resembles real-field conditions.

/Real-time Simulation \ /Communication \ /Fault Detection \

in Opal-RT & Streaming Layer

‘ OpenPDC ] ( Machine Learning]

R ﬁ
Generating Real PMUs Phasor Fault Detection
{ Faus PMU #1 Dt
Opal-RT/RT-Lab Sequence a il Concentrator

IEEE
Test Feeder =
ﬁ
Opal-RT/Target Virtual
PMUS
Real-time ——
Simulation 6 PMUs

Testbed Overall Scheme




Testbed # 1: 3D-Power (Summer 2017)
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* PMU & Opal-RT GPS clock synchronization

GPS
SIGNAL

Analysis of PMU streams

* Communication Network Layer Simulation

s Fault Scenarios

+ State Estimation

+ Static and dynamic
test

.

* Protocol validation PMU # 3 ‘
+ Hardware-in-the-loop B B |
B || = || =N | CNS-GUI
PMU L
Streams -

Comm Network Layer

- L& I’ o . v TR 4
B@._“-e: Al

PostgreSQL/CSV |~ . - | &'

=
&0
gl

ARTEMES &




IEEE 37-nodes test feeder

Power System Model:

799 mm— ,
724
712 701 s * |[EEE 37-nodes with wye transformer at the
C 707 feeder
713 704 |
42 705 F_l\.mz * T T720 *3 Real PMUs in the network
° ° 23 * 6 Virtual PMUs in the network
729 744 727 ’703 7714 7706 .
730 * 3 Fault locations 3 fault types (AG, AB, and
28 ? ®ns ®72s ABCG)
732
736 ° . T O Real PMU * Approx. 900 events produced and recorded
F S\T 710 733 . Virtual PMU
) T 734 740 l \ Fault
737 738 711 741
4735 it @



GPS Clock Synchronization

OP5600

* Clock: Siemens Ruggecom PTP Source

Real Time Simulator Ethernet
FPGA OP5142 126-0552 . .
130428 |Clock Adapter| Power ETHERNET *Use Oregano Card for Synchronization
cable .
RTSLMaster (——— RTS SMA :'] * Opal-RT FPGA synchronized with PMU
Oregano .
sync1588 Card  SMA (X7) GPs * Setup was built to be able to have
SIGNAL . .
SMA (X4) PP same timestamps between virtual and
Eth 1588 & T LT real PMUs.

* A Big Practical Challenge, No-Body
did it before with Opal-RT!

10/17/2018 10




Communication Layer Modeling

i e S — * Use CORE Simulation Environment
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__________ | * Emulates real monitoring system’s
latencies

B

Virtual Host

~
—————————

* Applying to the PMU streams
considering:
* Bandwidth Limit
* Packet Loss

—————

-~

Physical Network connections

Emulated Network

T T S

——————————

P"‘“} 1 Virtual Host Virtual Host PMU3

* Collisions

* Impact evaluation of delays and data

Communication Network Simulated availability.
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2: 4D-Power (Summer 2018)
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* |[EEE 123-nodes test feeder in Opal-RT
* Simulated with RT-Lab/ePhasorSim
* Real PMUs from established vendors

*Approx. 10,000 events simulated
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IEEE 123-nodes test feeder
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Fault Sequence

IEEE 123-nodes test feeder

/ ! / / / /./' / j * 14 Fault locations
I AB BC AC ABC * 8 locations at three-phase branches
* 6 locations at single-phase branches
> | w | »| &
5| 818 |2[g|35]|3
©1 90 - 7 fault types
* Single-line-to-ground
* Double-line-to-ground
* Three-line-to-ground
s S : :
SINGLE-LINE-TO- LINE-TO-LINE-TO- *Changing fault impedance 0.1 — 50 Ohm

GROUND GROUND LINE-TO-LINE
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PMU Data Applications in Distribution System

10/17/2018

v"Model validation

v Topology detection

v'State estimation

v'Fault detection

v Equipment health diagnosis
v'Volt-Var optimization

v" DER Management

v etc....
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Data Application: Fault Detection with Shape Data
Analysis

* We proposed a novel algorithm for fault detection based on Shape Data
Analysis (SDA).

* SDA attempts to give insight into data by imposing a geometry on it.
* SDA uses shape as an abstraction or a feature of data.

* Fault events with similar shape can be clustered together.

10/17/2018 4D-POWER 16
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Fault Detection with Shape-based Clustering

Single-lina -to-ground .

Fault data represented by the function
space B =B(t): [0,T] » R3 (i.e. 3-
phase voltage or current). Then it is
transformed with a Square-root Velocity
Function (SRVF) into a new event space o oo o1 or o :
where the fault similarities can be o B

B(): [0,T] —» R3 B _
better extracted. SRVE(B) = () = 1B

Time Domain

016 018 02 022 024

Function Space in a
Hilbert Sphere

The SRVF transforms the event space (fault event streams) into a sphere space when similarities can be
extracted in a more simple manner.

J. Cordova, C. Soto, M. Gilanifar, Y. Zhou, A. Srivastava and R. Arghandeh “Shape Preserving Incremental Learning for Power Systems Fault Detection,” IEEE
Control Systems Letters, Jan. 2019.
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Fault Detection with Shape-based Clustering

In the new function space after the SRVF
transformation, for every signal B; and
B,, two distances will be calculated: the
amplitude distance and the phase
distance.

Phase distance

The phase distance is the amount of
warping ¥ (or horizontal shift) necessary
to align the signal B, to B,.

The amplitude distance between two
the signal B; to B, is the distance (or
vertical shift) for both time series to
become fully aligned.

Amplitude distance

In general, fault events with similar shape should have an small distance.

Image source: Dr. Anuj Srivastava, FSU.



Data Application: Fault Detection with Shape Data

Input Data FRAPD in the shape space
DL VY Events space construction FRAD(B,,B;) =

‘:!' 'J' B(t) -. "’!f"‘h =g ey \/-7"
mwhfh«}fmmwm.« SRVF(B) = q(t) = 1B FRPD(yy..2) = cos™ ' ({1,¥y..2)

! T
prolfilffifvmmmvan: FRAPD(B,,B;) =

B(t): [0,T] » R?

New Fault Events

o
wm«m«
|

AFRAD(B,,B3)+ (1-A)FRPD(yy..2)

Clustering with FRAPD »
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Fault Detection with Shape-based Clustering

* The classification is performed by a hierarchical clustering process, resulting in similar
events being grouped together for event detection purposes.

-

Multivariate Accuracy %
8

Multivariate Accuracy %
Multivariate Accuracy %

(a) Fault detection with proposed SDA methodology; (b) SVM ; (c) NN

10/17/2018 20




Fault Detection with Shape-based Clustering

Misclassification Error % for different fault detection methods

Method FRAPD SVM NN
False Positive 2.69 18.52 33.34
False Negative 1.68 16.16 33.33

Total 4.37 34.68 66.67

FRAPD: Fisher-Rao Amplitude Phase Distance

10/17/2018 21
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