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1. Motivation
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Effect:
• Possible asset overloading due to increasing number of EV charging processes
• Power quality problems, e.g., voltage level, harmonics, flicker, …

Possible Solutions:
• Grid enhancement (transformer, cables)
• Active power management, e.g., BDEW1 traffic light model [1]

• Red: Network Phase
• Yellow: Interaction Phase
• Green: Market Phase

1 “Bundesverband der Energie- und Wasserwirtschaft”
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Approx. 4 kW Up to 22 kW (Type 2 Connector)
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2. Related Work
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Asset Overloading
• Centralized [2, 3, 4] and 

decentralized [5, 6, 7, 8] 
scheduling algorithms

• (Real-time) optimization 
problem [9]

Power Quality (PQ)
• Design of new hardware 

[10, 11, 12, 13, 14]
• Local voltage controller 

[15, 16, 17]

Contribution
• Combination of asset overloading and voltage control in a real-time 

charging algorithm [18]
• Validation of algorithm using Power Hardware In the Loop (PHIL)



3. Smart Charging Solution
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Design Criteria
• Scalable real-time architecture
• Separation of concerns of the different stakeholders
• Safe test and deployment in real-word environment
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KPI: Key Performance Indicator 
of the power grid, e.g. voltage

OCPP: Open Charge Point Protocol 1.6+

P1, P2, P3: Power of the charging station

E1, E2, E3: Event from the power grid
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3. Smart Charging Solution
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3.1. PQ-Indicator (1)

Input: Power Grid KPIs
Output: PQ-Indic ∈ [-1,+1]

• PQ-Indic defined using traffic light model
• Green (G): Grid state is stable
• Yellow (Y): Grid state is non-optimal
• Red (R): Grid state is critical

• KPI Kk transformation
• Piece-wise linear interpolation

function
• Thresholds: ERk, RYk, YGk, GYk, YRk, REk

• Example: YGU = 225 V, GYU = 235 V,  …
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232 V

PQ-Indic to traffic light model mapping

K k

YG

RY

ER
RY k YGkERk

GY

YR

RE

R EkGY k YRk

Piece-wise linear interpolation



3. Smart Charging Solution
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3.1. PQ-Indicator (2)

Combining different KPIs
• Two criteria

• A1: Grid asset overloading
• A2: Voltage level

• Different grid locations
• Transformer
• Charging Station (CS)
• Critical points

• Three-layer hierarchical logic
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Hierarchical combination logic



3. Smart Charging Solution
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3.2. Smart Charger

Input: PQ-Indic
Output: Power at the CS

• Finite State Machine (FSM)
• Seven states
• Transitions after events, e.g., 

new PQ-Indic, SoC change, …
• Actions of state transitions

based on destination state
• Low/high red → polynomial increase/decrease
• Low/high yellow → linear increase/decrease
• Green → follow the users charging profile
• Gray (standby) → increase only when critical
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Finite state machine of the smart charger



4. Evaluation (1)
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Simulation Setup
• Real low voltage grid with realistic 

load profiles
• Four CSs at three different locations
• One minute between FSM transitions
• Baseline scenarios

• Baseline_min: No charging at all
• Baseline_max: All CSs charge with 

22 kW
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Location of the charging stations



4. Evaluation (2)
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Apparent power at the transformer



4. Evaluation (3)
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Voltage level at the critical point



4. Evaluation (4)
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PHIL at AIT FlexEVLab
• Emulated electric vehicle via RLC 

load
• Real electric vehicle via Type 2 CS

• Results
• Real/emulated electric vehicle 

with initialization and battery 
saturation phase

• Slight impact on the smart 
charger behavior due to 
accuracy, reaction time and 
saturation phase
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Emulated EV vs charging signal

Real EV vs charging signal



5. Conclusion and Future Work
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• Conclusion
• Finite state machine appropriate for mitigating asset overloading and 

power quality issues
• Real world applicable

• Future Work
• Perform further evaluations with different timing and field tests
• Improve fairness among charging stations
• Included Vehicle-2-Grid
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Thank you for your attention!

Questions?
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