

SCRIPT FILE EXAMPLE

The function of a script file is to control the operation of the simulator and to
collect and analyze data without direct user interaction. A record/playback feature
is pro-vided to assist in creating the script file. A simple example is described in
which sim-ulator commands are written to a script file and then played back.
“Batch mode op-eration” is introduced along with “Preprocessor Variables”.

The term “Batch Mode Operation” describes the ability of script files to run many
different cases with minimal or no user interaction. For example, a script file can
be created to run many cases overnight. For each case, output data can be stored
or plotted without any user interaction. This type of operation is particularly
useful for protective relay testing where many different types of faults may have
to be applied at different locations along a line.

The term “Preprocessor Variable” is used to describe special variables which can
be altered from the RunTime Operators Console. Whenever one of these variables
is changed, the preprocessor compiler automatically performs a reïcompile
without the necessity of returning to Draft.

7.1 PREPARING THE CIRCUIT IN DRAFT

To illustrate batchmode operation, the circuit from Chapter 2 consisting of a
source, a travelling wave transmission line and a load is used. However, the line
model is changed, the total line length is altered to 100 km, and the position of the
fault bus is made a variable. The fault resistance is also made a variable.

Changing fault resistance and fault bus location would normally require stopping
the case, recompiling in Draft and then returning to RunTime to restart the case.
With preprocessor variables, a recompile can be invoked and performed directly
in Run-Time whenever a preprocessor variable is changed and the case is stopped.

The new line model is named lf_rtds_sharc_sld_TLINE. The line currently in the
Draft circuit is split using two lines and a fault bus is placed between them. With
this configuration, the fault bus can be moved anywhere along the line. For the
source component and transmission line parameters, refer to Chapter 2.

The modified portion of the Draft circuit with the fault bus placed between two
lines is shown below.

Script File Example

To define a preprocessor variable in Draft, the parameter must be given a variable
name rather than a numerical value. A $ character must precede the variable name
entered in the component. In the fault component menus, enter variable name $Ron
as the A,B and C Phase to Ground Fault Resistance parameter. For example;

An initial value is assigned to the variable Ron through the use of a Draft variable
slider. The Draft variable slider component also creates a crossïreference between
Draft and RunTime. The Draft variable slider component icon (rtds_draft_var)
ap-pears as shown below.

Script File Example

Draft Variable Slider (rtds_draft_var)

The Slider component requires the following input parameters;

Note: The Name of the slider must be the same as the variable name entered for
the fault resistance. The $ character is not required in the slider description. The
fault resistance will initially be set to 0.2 ohms.

The 100km transmission line is modelled as two seperate lines, each with its own
icon. One icon represents the sending end of the 100km line while the other repre-
sents the receiving end. The length of each end can be modified using the
preproces-sor. This operation moves the position of the fault bus along the length
of the line. In the tline calculation block (lf_rtds_sharc_sld_TL16CAL), the
preprocessor data can be entered as shown below;

Enter variable name $length as the preprocessor variable in the tline calculation block.
If the icon represents the sending end of the line, set the parameter ’hmnpp’ to
(pp_var%). Similarly in the other tline calculation block for the receiving end of

Script File Example

the line, set the preprocessor variable name as $length and set the ’hmnpp’
parameter to (100ïpp_var%). Now for example, if the preprocessor variable
(pp_var) length is set to 40%, the length of the sending end line will be set to 40%
of the total line length and the length of the receiving end line will be set to 60%
of the total line length.
An initial value must be assigned to the variable length using the Draft variable slider.
The Slider component requires the following input parameters.

Note: The Name of the slider must be the same as the variable name entered for
the line length. The $ character is not required in the slider description. The initial
line length of the sending end line will be 40km and the receiving end line length
will be 60km.
For protective relay testing, fault position may have to be located between 1% and
99% of the line length. The travelling wave line model cannot be used to represent
lines whose travel time is less than one simulation timeïstep. For a 50³sec time
step this is 15km. If the fault bus position is set at 1% of a 100km line, it cannot
be mod-elled with a travelling wave line (ie. the sending end line length is 1km).
A useful option is available in the tline calculation block to allow lines shorter
than one timeï step to be modelled as piïsections.

With the “If Travel T < T Step, allow PI model” option set to YES, the entire
range of fault positions can be tested using one line model.

Script File Example

A simple fault controller can be added to the Draft circuit as shown.

The signal LGFLT should be entered in the fault component as the signal name to
control the fault. Set phase A to ground fault to operate on bit 1 of the LGFLT
signal, set phase B to ground fault to operate on bit 2 and phase C to ground fault
to operate on bit 3. The fault controller will allow the type of fault to be selected
in RunTime using the switches AG,BG and CG. Note that the ON value of each
switch is set as shown above. The fault duration is set using the FLTDUR slider
and the fault is initi-ated by pressing the Fault pushbutton during the simulation.

Once the data has been entered the case can be compiled in the usual manner.

7.2 PREPARING THE SIMULATION USING RUNTIME

To begin the simulation, first load the correct RunTime batch file corresponding
to the compiled Draft case name. Draft variable sliders can then be created to
modify the fault resistance and the line length. As long as the case is stopped,
modifying the draft variable slider in RunTime will change its’ value. If the case
is running, the draft variable sliders will appear greyed out (disabled) in RunTime
and changes will not be accepted. On clicking the Run button, RunTime will
detect the change and recom-pile the circuit prior to actually starting the case.

The RunTime operators console can be set up similar to that shown below.

Script File Example

If many plots are being saved and printed during the batch mode operation, text dis-
playing simulation parameters is useful. For example, the fault resistance and line length
can be displayed on a plot. To add text, right click on the background of a Run-Time plot
to get the Add Text menu. Select Add Text, select Select Signal from the Add Text menu
and finally select the draft variable slider name Ron. For example;

This will display, as text, the current value of the slider Ron. Descriptive text can
be added before or after the string as shown below.

Script File Example

This results in a plot that appears similar to that shown below. Every time the
fault resistance or line length draft variable sliders are changed in RunTime, the
corre-sponding values will change accordingly on the plot(s).

7.3 RUNTIME SCRIPT RECORD/PLAYBACK FEATURE

The script record feature writes simulator commands to a script text file. During a
record session, the operations performed in RunTime by the user will be written
to the script file. For example, if a simulation is started during a record session,
the com-mand Start will be written to the script file.

To start a record session, select Scriptï>New from the RunTime Toolbar. A file
re-questor will appear requesting a script file name.

Script File Example

Enter a script file name and a script tool bar will appear in RunTime as shown.

Select the record script button from the Script toolbar as shown to begin the
record session.

A script file labelled rec_play.scr is now being recorded.
During the record session,
S start the simulation
S set the A phase to ground fault switch (AG) to 1
S set the B and C phase to ground fault switches (BG & CG) to 0
S set the fault duration slider to 0.1 seconds (FLTDUR)
S apply the fault by pressing the Fault pushbutton
S stop the simulation

Select the stop button from the script tool bar to end the record session.

Once the recording session is complete, a script file will exist in which the recorded
actions are stored. In this example, the script file name is rec_play.scr. To view the

contents of the rec_play.scr file, select the edit button from the script toolbar.

Script File Example

The script file should look similar to that shown below.

SUSPEND 2.554;
Start;
SUSPEND 6.97;
SetSwitch ”Subsystem #1 : CTLs : Inputs : AG” = 1;
SUSPEND 1.011;
SetSwitch ”Subsystem #1 : CTLs : Inputs : BG” = 0;
SUSPEND 1.372;
SetSwitch ”Subsystem #1 : CTLs : Inputs : CG” = 0;
SUSPEND 10.094;
SetSlider ”Subsystem #1 : CTLs : Inputs : FLTDUR” = 0.1;
SUSPEND 1.853;
PushButton ”Subsystem #1 : CTLs : Inputs : Fault”;
SUSPEND 0.2;
ReleaseButton ”Subsystem #1 : CTLs : Inputs : Fault”;
SUSPEND 3.715;
Stop;

The SUSPEND times recorded in the script are the amount of time in seconds that
it took the user to perform the next action and will vary from script to script. SUS-
PEND times could be removed to increase the speed of the script.

The SetSwitch command was recorded in the script file when the AG,BG and CG
switches were set to 1 and 0. This command requires the switch name and
position as arguments.

The SetSlider command was recorded in the script file when the FLTDUR slider
was set to 0.1. This command requires the slider name and position as arguments.

The PushButton and ReleaseButton commands were recorded in the script file
when the FLT pushbutton was pressed and released. These commands require the
pushbut-ton name as an argument.

The Start and Stop commands do not require any arguments and a script file does
not need to include these commands. A script file can be started at any time
before, dur-ing or after a simulation run.

The script file can now be run in its existing form or it can be edited. The section
which follows will introduce the script edit facility.

To run the recorded script file, select the play button from the Script Toolbar.

During the playback session you should notice that all the actions recorded in the
script file are now being performed in RunTime without any interaction.

Script File Example

7.4 BATCHMODE OPERATION

As mentioned previously, batchmode operation refers to running many
simulations without user interaction. Script files can be modified to achieve this
type of operation using ’C’ like script functions. This example creates a script
which will perform 27 simulations according to the flow chart below.

' set length draft variable slider
b

a

set fault type

b

set fault resistance a

b

start counter

b

Start

b

Apply Fault

b

Print Plot

b

Stop

b
change fault resistance

b
?

fault resistance loop counter = 3

b Yes
change fault type

b
?

fault type loop counter = 3

Yes
b

change line length
b
?

No
line length counter = 3

No

No

b

Yes

END

Figure 7.1

Typically when creating a script file, a base script would be created first using the
record feature. The base script can then be modified to operate according to the flow

Script File Example

chart. For example, the following RunTime operations could be recorded in a
script file.

S set the length draft variable slider

S set the fault resistance draft variable slider

S set the A phase to ground fault switch (AG) to 1

S set the B and C phase to ground fault switches (BG & CG) to
0 S start the simulation

S apply the fault by pressing the Fault pushbutton

S print the plot

S stop the simulation

The base script file can now be edited as shown below. To edit the script file select
the button from the script toolbar. Specific lines have been numbered in this

example, so they can be referenced and discussed later in the chapter.

/**/
/* Variable Declaration */

int j,k,i,loop_counter; /* LINE 1 */
float llength[3],res[3];
int fault_typeA[3],fault_typeB[3],fault_typeC[3];

/**/
/* Initialization */

llength[0] = 40.0; /* LINE 2 */
llength[1] = 50.0;
llength[2] = 80.0;

res[0] = 0.1;
res[1] = 1.0;
res[2] = 5.0;

fault_typeA[0] = 1;
fault_typeA[1] = 0;
fault_typeA[2] = 0;

fault_typeB[0] = 0;
fault_typeB[1] = 2;
fault_typeB[2] = 0;

fault_typeC[0] = 0;
fault_typeC[1] = 0;
fault_typeC[2] = 4;

/***/

for (j=0;j<3;j++) /* LINE 3 */

Script File Example

{
/* Set the preprocessor variable length */
SetSlider ”DraftVariables : length” = llength[j]; /* LINE 4 */

for (k=0;k<3;k++)
{
/* Set the fault type */
SetSwitch ”Subsystem #1 : CTLs : Inputs : AG” = fault_typeA[k];
SetSwitch ”Subsystem #1 : CTLs : Inputs : BG” = fault_typeB[k];
SetSwitch ”Subsystem #1 : CTLs : Inputs : CG” = fault_typeC[k];

for (i=0;i<3;i++)
{
loop_counter++;

/
*

LINE 5 */

/* Set the fault resistance */
SetSlider ”DraftVariables : Ron” = res[i]; fprintf(stdmsg,”Running

Simulation Case Number %d\n”,loop_count-
er); /* LINE 6 */ Start;

SUSPEND 2.694;
PushButton ”Subsystem #1 : CTLs : Inputs : Fault”;
SUSPEND 0.261;
ReleaseButton ”Subsystem #1 : CTLs : Inputs : Fault”;
PlotPrint ”Fault Bus”;
Stop;
}
}

}

S Line1 ï all variables must be declared before they are used within the script.

S Line2 ï llength array is initialized so that the fault bus will be moved to
40%,50% and 80% of the line. Arrays named fault_type are initialized so the
first fault applied is an A phase to ground followed by a B phase to ground and
then a C phase to ground fault. Three different fault resistances have been chosen
0.1,1.0 and 5.0 ohms and array res is initialized with these values.

S Line3 ï three for loops are added. The outer loop will be executed three times
ac-cording to the parameters entered in the for loop. Each time the loop is
executed the length preprocessor variable is changed. The next for loop will be
executed three times. Each time the fault type will be changed. The inner for loop
will also be exe-cuted three times. In each loop, the fault resistance will be
changed, simulation started, fault applied, and plot printed.

S Line4 ï simulator commands can accept variables as arguments. The SetSlider
command has been set to the llength array. The value of “j” determines what
value the draft variable length slider will be assigned.

S Line5 ïfor each simulation case that is run, the loop_counter is incremented.

S Line6 ïthe fprintf function has been added so that the statement “Running
simula-tion Case Number #” will be written to the RunTime message window
during the script run.

Script File Example

After the script file has been modified, play back the script. Notice the fprintf
mes-sage in the RunTime message window as the script is running. The script will
run all 27 cases according to the flow chart in Figure 7.1.
During the run, it may be required to obtain data from the simulation to be used within
the script. Simulation signals must be declared in the script as external type variables. An
external variable option is available in the script toolbar to write external vari-ables to a
script file. The external variable option is only available during a record session. To add
an external variable declaration to an existing batchmode script,
S select the append button from the script toolbar. The append feature starts a

record session but will write the new commands to the bottom of the script file
and will not overwrite the existing text.

S select the external variable option from the script toolbar. A signal
selector dialogue box will open.
S add N7 as an external variable
S stop the record session

The script file should now contain an external variable declaration similar to that
shown below.
external ”Subsystem #1 : Node Voltages : S1) N7”;

In the external variable declaration, the name appearing in quotes is the actual
vari-able name of the signal. This variable is very long and would be inconvenient
to use within the script. A new variable name can be assigned by placing the
variable fol-lowing the ending quotes as shown.
external ”Subsystem #1 : Node Voltages : S1) N7”Volts;

If node voltage 7 is referenced from within the script file, the variable name Volts
would be used. The external variable declaration can appear anywhere within the
script file, but it must appear before the variable is used. Typically variable declara-
tions would appear at the top of a file. Move the external variable declaration to the
top of the script file and add the script functions shown in bold type to determine the
peak steady state value of node voltage 7 during the simulation.

float llength[3],res[3],pk_volts;
.
.
.

Start;
UpdatePlots;
pk_volts = arraymax(Volts);
fprintf(stdout,”Fault Bus Voltage = %f kV\n”,pk_volts);
.

Script File Example

.

.

The fprintf statement is writing the peak voltage to a file named stdout. This file can
be viewed in RSCAD/RunTime by selecting the view output button from the

script file toolbar.

For further details and descriptions on script operations and functions, please refer
to the RSCAD/RunTime onïline help.

