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PV ARRAY MODEL 

1. Introduction 

This document describes the modeling of the RTDS PV array model. 

 

Figure 1 RTDS PV Array Model 

 

The fundamental component of a PV array is the solar cell. Solar cells are manufactured using 

several types of semiconductor materials eg silicon and germanium; these semiconductor materials 

produce an electric charge when exposed to direct sunlight. Solar cells can be connected in series 

and/or parallel to form PV modules. A typical module will have 36/72 cells connected in series. 

The PV modules are then combined in series and parallel to form PV arrays. The combination of 

individual solar cells into PV arrays enables large values of voltages and currents to be obtained 

at the terminals of a PV array.  

 

Figure 2 Series connected cells in a module [1] 

 

The parameters that specify how the cells are connected to form arrays are the number of series 

connected cells in a module Nc, the number of parallel connected cells in a module Ncp, the 

number of series connected modules Ns and the number of parallel connected modules Np.  
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Figure 3 Cell-Module-Array [2] 

2. Mathematical model of the solar cell 

An ideal solar cell is electrically represented as a current source in parallel with a single diode, 

however practical solar cell models require additional elements to accurately represent their 

nonlinear current-voltage characteristics. A commonly used practical model extends the ideal solar 

cell by including a series and shunt resistance as shown in figure 3. 

 

Figure 4 Single diode, five parameter model 

The current-voltage relationship of the single diode, five parameter model is given by: 

𝐼 = 𝐼𝑝ℎ − 𝐼𝐷 − 𝐼𝑠ℎ 

 

(1) 

𝐼 = 𝐼𝑝ℎ − 𝐼𝑜 (𝑒𝑥𝑝 (
𝑉 + 𝑅𝑠 𝐼

𝑁𝑐𝑎𝑉𝑡
) − 1) − (

𝑉 +  𝑅𝑠 𝐼

𝑅𝑠ℎ
) 

(2) 

 

The photocurrent Iph is the current induced by the incidence of sunlight on the solar cell. The diode 

current ID produces the I-V characteristic of the PV cell where Io is the diode reverse saturation 

current. The diode ideality factor a is a measure of how closely the diode matches the ideal diode 

equation. The series resistance Rs is the sum of several structural resistances in the solar cell while 

the shunt resistance Rsh represents the leakage current of the semiconductor material and the 
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manufacturing process of the solar cell [2, 3]. Vt is the diode thermal voltage which is a constant 

defined at any given temperature T (in K) by: 

𝑉𝑡  =  
𝑘𝑇

𝑞
 

(3) 

k is the Boltzmann constant (1.3806503x10-23J/K) and q is the magnitude of an electron charge 

(1.602176x10-19 C). 

 

The single, diode five parameter model can be further simplified by neglecting the effect of the 

shunt resistance (assuming a very high shunt resistance value > 1000 ohm) as shown in figure 5. 

 

Figure 5 Single diode, four parameter model 

 

The current-voltage relationship of the single diode, four parameter model is given by: 

𝐼 = 𝐼𝑝ℎ − 𝐼𝑜 (𝑒𝑥𝑝 (
𝑉 + 𝑅𝑠 𝐼

𝑁𝑐𝑎𝑉𝑡
) − 1) 

(7) 

 

The RTDS PV array model includes the option to select either the single diode, four 

parameter model or the single diode, five parameter model. 

 

The I-V characteristics define the operating point of the PV array for a given isolation and 

temperature as shown in figure 5. The curves range from the short circuit current (Isc,0) to the 

open circuit voltage (0,Voc) with a knee point (Im, Vm) defined as the maximum power point 

where the PV array generates maximum electrical power Pmax.   
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Figure 6 I-V and P-V curve of a solar cell 

 

The I-V characteristic of the solar cell depends on the variation of the solar parameters with the 

given insolation G (solar intensity W/m2) and temperature T (K) as described by (4) - (6) where ki 

is the short circuit current temperature coefficient (%/0C) and Eg is the energy gap (eV) of the 

selected solar cell semiconductor material. 

𝐼𝑝ℎ = 
𝐺

𝐺𝑟𝑒𝑓
∗ (𝐼𝑝ℎ𝑟𝑒𝑓

+ 𝑘𝑖(𝑇 − 𝑇𝑟𝑒𝑓)) 

 

(4) 

𝐼𝑜  = 𝐼𝑜𝑟𝑒𝑓  (
𝑇

𝑇𝑟𝑒𝑓
)

3

 𝑒𝑥𝑝 (
𝐸𝑔

𝑎𝑉𝑡
(1 −

𝑇𝑟𝑒𝑓

𝑇
)) 

 

 

 

(5) 

𝑎 = 𝑎𝑟𝑒𝑓 (
𝑇

𝑇𝑟𝑒𝑓
) 

 

(6) 

 

 
Figure 7 Variation of I-V curves with different G and T values. 
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Generally the parameters (𝐼𝑝ℎ𝑟𝑒𝑓
, 𝐼𝑜𝑟𝑒𝑓 ,  𝑎𝑟𝑒𝑓,  𝑅𝑠 , 𝑅𝑠ℎ) are not made available by the PV 

manufacturers and have to be estimated from available data (𝐼𝑠𝑐𝑟𝑒𝑓
,  𝑉𝑜𝑐𝑟𝑒𝑓

, 𝐼𝑚𝑟𝑒𝑓
,  𝑉𝑚𝑟𝑒𝑓

, 𝑅𝑠𝑜 ,

𝑅𝑠ℎ𝑜) which are specified in the PV data sheets at stc 𝐺𝑟𝑒𝑓 = 1000 
𝑊

𝑚2  , 𝑇𝑟𝑒𝑓 = 250.  

 

The RTDS PV array model includes the option to estimate the unknown solar cell 

parameters using either an analytical method or an iterative method. 

3. Analytical method for solar cell parameter estimation 

For the single diode, four parameter model, the four unknown parameters are estimated using the 

following analytical expressions [3]. 

𝐼𝑝ℎ𝑟𝑒𝑓 = 𝐼𝑠𝑐𝑟𝑒𝑓  

(8) 

𝑎𝑟𝑒𝑓 = 
𝑞(2𝑉𝑚𝑟𝑒𝑓 − 𝑉𝑜𝑐𝑟𝑒𝑓)

𝑁𝑐𝑘𝑇𝑟𝑒𝑓 [
𝐼𝑠𝑐𝑟𝑒𝑓

𝐼𝑠𝑐𝑟𝑒𝑓 − 𝐼𝑚𝑟𝑒𝑓
+ ln (1 −

𝐼𝑚𝑟𝑒𝑓

𝐼𝑠𝑐𝑟𝑒𝑓
) ]

 
 

 

(9) 

𝐼𝑜𝑟𝑒𝑓 = 

𝐼𝑠𝑐𝑟𝑒𝑓

(exp (
𝑉𝑜𝑐𝑟𝑒𝑓

𝑁𝑐𝑎𝑟𝑒𝑓𝑉𝑡
) − 1)

 
 

 

(10) 

𝑅𝑠 =

𝑁𝑐𝑎𝑟𝑒𝑓𝑉𝑡 ln (1 −
𝐼𝑚𝑟𝑒𝑓

𝐼𝑠𝑐𝑟𝑒𝑓
) + (𝑉𝑜𝑐𝑟𝑒𝑓 − 𝑉𝑚𝑟𝑒𝑓)

𝐼𝑚𝑟𝑒𝑓
 

 

 

(11) 

 

For the single diode, five parameter model shown in figure 3, the five unknown parameters are 

estimated using the following analytical expressions [4]. 

𝑅𝑠ℎ = 𝑅𝑠ℎ𝑜  

(12) 

𝑎𝑟𝑒𝑓 = 
𝑉𝑚𝑟𝑒𝑓 + 𝐼𝑚𝑟𝑒𝑓𝑅𝑠𝑜 − 𝑉𝑜𝑐𝑟𝑒𝑓

𝑉𝑡 [ln (𝐼𝑠𝑐𝑟𝑒𝑓 −
𝑉𝑚𝑟𝑒𝑓

𝑅𝑠ℎ𝑜
− 𝐼𝑚𝑟𝑒𝑓) − ln (𝐼𝑠𝑐𝑟𝑒𝑓 −

𝑉𝑜𝑐𝑟𝑒𝑓

𝑅𝑠ℎ𝑜
) − (

𝐼𝑚𝑟𝑒𝑓

𝐼𝑠𝑐𝑟𝑒𝑓 −
𝑉𝑜𝑐𝑟𝑒𝑓

𝑅𝑠ℎ𝑜

)  ]

 
 

 

(13) 
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𝐼𝑜𝑟𝑒𝑓 = 

𝐼𝑠𝑐𝑟𝑒𝑓 −
𝑉𝑜𝑐𝑟𝑒𝑓

𝑅𝑠ℎ

exp (
𝑉𝑜𝑐𝑟𝑒𝑓

𝑁𝑐𝑎𝑟𝑒𝑓𝑉𝑡
)

 

 

 

(14) 

𝑅𝑠 = 𝑅𝑠𝑜 − 

(

 

𝑎𝑟𝑒𝑓𝑉𝑡

𝐼𝑜𝑟𝑒𝑓  

exp (
𝑉𝑜𝑐𝑟𝑒𝑓

𝑁𝑐𝑎𝑟𝑒𝑓𝑉𝑡
)
)

  

 

(15) 

𝐼𝑝ℎ𝑟𝑒𝑓 = 𝐼𝑠𝑐𝑟𝑒𝑓 (1 +
𝑅𝑠

𝑅𝑠ℎ
) + 𝐼𝑜𝑟𝑒𝑓  (exp(

𝐼𝑠𝑐𝑟𝑒𝑓𝑅𝑠

𝑎𝑟𝑒𝑓𝑉𝑡
) − 1) 

(16) 

 

4. Iterative method for solar cell parameter estimation 

The RTDS PV array model uses the Newthon-Raphson algorithm which converges to the roots of 

a real valued function, within a desirable tolerance, using successive approximations from a given 

initial point [5]. The details of the Newthon-Raphson algorithm for the solar array model is given 

in the Appendix. The flowchart of the Newthon-Raphson algorithm is shown in figure 8. The initial 

starting point is estimated using the analytical expressions given by equations (8)-(16). The 

maximum number of iterations is fixed at 100. The tolerance value and maximum value are fixed 

at 1e-10 and 10e3 respectively.  

 

The reference solar cell parameters obtained from the analytical or iterative methods are then 

used in equations (4)-(6) to obtain the total PV array current given by: 

 

For the single diode, four parameter model: 

𝐼𝑝𝑣 = 𝑁𝑐𝑝𝑁𝑝𝐼𝑝ℎ − 𝑁𝑐𝑝𝑁𝑝𝐼𝑜 (𝑒𝑥𝑝 (

𝑉𝑝𝑣  +
𝑁𝑠

𝑁𝑝𝑁𝑐𝑝
 𝑅𝑠 𝐼𝑝𝑣

𝑁𝑠𝑁𝑐𝑠𝑎𝑉𝑡
) − 1) 

 

 

 

For the single diode, five parameter model: 

𝐼𝑝𝑣 = 𝑁𝑐𝑝𝑁𝑝𝐼𝑝ℎ − 𝑁𝑐𝑝𝑁𝑝𝐼𝑜 (𝑒𝑥𝑝 (

𝑉𝑝𝑣  +
𝑁𝑠

𝑁𝑝𝑁𝑐𝑝
 𝑅𝑠 𝐼𝑝𝑣

𝑁𝑠𝑁𝑐𝑠𝑎𝑉𝑡
) − 1) −

𝑉𝑝𝑣 +
𝑁𝑠

𝑁𝑝𝑁𝑐𝑝
𝑅𝑠𝐼𝑝𝑣

𝑁𝑠

𝑁𝑝𝑁𝑐𝑝
𝑅𝑠ℎ

𝐺
𝐺𝑟𝑒𝑓
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Figure 8 Flowchart of Newthon-Raphson method for solar cell parameter estimation 
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5. Maximum power point tracking 

The RTDS PV model includes the option to estimate the maximum power point for a given 

insolation and temperature using two analytical approximations: 1. Lambert function 

approximation 2. Fractional open circuit voltage approximation.  

 

 

Figure 9 Enable maximum power point estimation 

5.1 Fractional open circuit voltage 

The maximum power point is estimated from the open circuit voltage using the following 

expression (where 𝐾𝑣 is the open circuit voltage temperature coefficient in %/degC). 

𝑉𝑜𝑐 =  𝑉𝑜𝑐𝑟𝑒𝑓 + (𝐾𝑣/100) ∗ (𝑇 −  𝑇𝑟𝑒𝑓)  +  𝑎𝑉𝑎𝑟 ∗ 𝑙𝑜𝑔(𝐺/𝐺𝑟𝑒𝑓) 

𝑉𝑚𝑝 =  (80%)𝑉𝑜𝑐 
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5.2 Lambert function approximation 

The expression for the maximum power point using the lambert function is given by [6]: 

Single diode, five parameter model: 

𝑉𝑚𝑝 =   𝑉𝑖𝑚 − ( 𝐼𝑖𝑚 − 
𝑉𝑖𝑚

𝑅𝑠ℎ
 )𝑅𝑠 

 

 

 

Single diode, four parameter model: 

𝑉𝑚𝑝 =   𝑉𝑖𝑚 − 𝐼𝑖𝑚𝑅𝑠 

 

Where: 

 

𝑉𝑖𝑚 = 𝑁𝑠𝑁𝑐𝑠𝑎𝑉𝑡 (𝑙𝑎𝑚𝑏𝑒𝑟𝑡𝑊 (
𝐼𝑝ℎexp (1)  

𝐼𝑜
) − 1) 

 

𝐼𝑖𝑚 =
𝑉𝑖𝑚𝐼𝑜

𝑁𝑠𝑁𝑐𝑠𝑎𝑉𝑡
exp (

 𝑉𝑖𝑚

𝑁𝑠𝑁𝑐𝑠𝑎𝑉𝑡
) 

 

 

6. Modeling Shading Effects 

A significant impact on the operation of PV modules is shading caused by cloud cover, trees or 

buildings. Shading creates mismatch losses in PV modules because the output of the entire PV 

module is determined by the shaded solar modules with the lowest output [1]. Typically PV 

modules are equipped with bypass diodes which protect the PV module from heating caused from 

current mismatches during shading conditions and blocking diodes which protect the unshaded PV 

array strings from reverse currents caused by the shaded strings. The addition of the bypass diodes 

creates multiple maximum power point peaks due to the different insolation levels. Multiple 

maximum points can “confuse” traditional hill climbing MPPT schemes as they can easily track 

and settle at a local maxima which reduces the available power output from the PV array.  

 

The RTDS PV model includes an option to include shading effects as shown in figure 10 and 11. 

When the enable shading parameter is selected the user has the option to include bypass diodes 

and/or blocking diodes in the PV array model. This option allows users to design and/or test a 

maximum power point tracking scheme that can track the global maxima of the PV array under 

shading conditions.  
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Figure 10 Enable shading effect in PV model 
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Figure 11 I-V and P-V curves with (red) and without (black) bypass diodes   
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Appendix 

Newthon-Raphson algorithm 

For a real-valued function f(x) = 0, the solution xi+1 is found using tangent line approximations 

from an initial point x0. 

𝑥1 = 𝑥0 −
𝑓(𝑥0)

𝑓′(𝑥0)
 

(17) 

𝑥𝑖+1 = 𝑥𝑖 −
𝑓(𝑥𝑖)

𝑓′(𝑥𝑖)
 

(18) 

 

The algorithm converges to a solution when: 

|𝑓(𝑥𝑖+1)| <  𝜀 

𝜀 is the desired tolerance or error value. 

(19) 

 

For a system with n non-linear equations and n unknowns, the Newthon –Raphson algorithm 

requires the array of functions as well as the array of the derivatives of the functions known as 

the Jacobian matrix to solve for the roots (xi+11, xi+12, xi+13, xi+14, xi+15,… xi+1n) [6].  

 

 f1(x1,x2,x3,x4,x5,…xn)=0  

 

(20) 

f2(x1,x2,x3,x4,x5,…xn)=0 

. 

. 

. 

fn(x1,x2,x3,x4,x5,…xn)=0 

 

The array of functions can be written as: 

f(X) = 0  (21) 

 

𝒇(𝑿) =

[
 
 
 
 
𝑓1(𝑿)

𝑓2(𝑿)
..

𝑓𝑛(𝑿)]
 
 
 
 

=

[
 
 
 
 
𝑓1(𝑥1,𝑥2 …𝑥𝑛)

𝑓2(𝑥1,𝑥2 …𝑥𝑛)
..

𝑓𝑛(𝑥1,𝑥2 …𝑥𝑛)]
 
 
 
 

= 0 ;  𝑿 = [

𝑥1

𝑥2

..
𝑥𝑛

] 

 

(22) 

 

The Jacobian matrix is obtained from the partial derivative of the functions: 
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𝑱 =  
𝜕(𝑓1, 𝑓2, …𝑓𝑛)

𝜕(𝑥1,𝑥2 …𝑥𝑛)
=  

[
 
 
 
 
 
 
 
𝜕𝑓1
𝜕𝑥1

𝜕𝑓1
𝜕𝑥2

…
𝜕𝑓1
𝜕𝑥2

𝜕𝑓2
𝜕𝑥1

𝜕𝑓2
𝜕𝑥2

⋯
𝜕𝑓2
𝜕𝑥𝑛

⋮ ⋮ ⋱ ⋮
𝜕𝑓𝑛
𝜕𝑥1

𝜕𝑓2
𝜕𝑥𝑛

⋯
𝜕𝑓𝑛
𝜕𝑥𝑛]

 
 
 
 
 
 
 

 

 

 (23) 

 

The Newthon-Raphson estimates are calculated using the expression: 

𝑿𝑛+1 = 𝑿𝑛 − 𝑱−𝟏𝒇(𝑿𝒏) = 𝑿𝑛 − ∆𝑿𝒏 (24) 

 

The convergence criteria for the solution of the non-linear equations is given as: 

|𝒇(𝑿𝑛+1)| <  𝜀 (25) 

 

6.1 Defining the array of functions  

The non-linear functions for the four and five parameter solar cell models are derived using (2) 

and (7) as well as points on the I-V and P-V curves at standard test conditions. 

 

A. For the single diode, five parameter model with unknowns (𝑰𝒑𝒉𝒓𝒆𝒇
, 𝑰𝒐𝒓𝒆𝒇 ,  𝒂𝒓𝒆𝒇,  𝑹𝒔 , 𝑹𝒔𝒉): 

𝐼 − 𝐼𝑝ℎ +  𝐼𝑜 (𝑒𝑥𝑝(
𝑉 + 𝑅𝑠 𝐼

𝑁𝑐𝑎𝑟𝑒𝑓𝑉𝑡
) − 1) + (

𝑉 +  𝑅𝑠 𝐼

𝑅𝑠ℎ
) = 0 

(26) 

 𝐴𝑡 𝐼 = 0,  𝑉 = 𝑉𝑜𝑐𝑟𝑒𝑓
: 

𝐼𝑝ℎ =  𝐼𝑜 (𝑒𝑥𝑝(
 𝑉𝑜𝑐𝑟𝑒𝑓

 

𝑁𝑐𝑎𝑟𝑒𝑓𝑉𝑡
) − 1) + 

𝑉𝑜𝑐𝑟𝑒𝑓

𝑅𝑠ℎ
 

 

 

 

(27) 

 𝐴𝑡 𝐼 = 𝐼𝑠𝑐𝑟𝑒𝑓
, 𝑉 = 0 𝑎𝑛𝑑 𝑢𝑠𝑖𝑛𝑔 (27) (𝑓1): 

𝐼𝑜 (𝑒𝑥𝑝 (
 𝑉𝑜𝑐𝑟𝑒𝑓

 

𝑁𝑐𝑎𝑟𝑒𝑓𝑉𝑡
) − 𝑒𝑥𝑝(

𝐼𝑠𝑐𝑟𝑒𝑓
𝑅𝑠 

𝑁𝑐𝑎𝑟𝑒𝑓𝑉𝑡
)) − 𝐼𝑠𝑐𝑟𝑒𝑓

(1 +
𝑅𝑠

𝑅𝑠ℎ
) + 

𝑉𝑜𝑐𝑟𝑒𝑓

𝑅𝑠ℎ
= 0 

 

 

 

(28) 

 𝐴𝑡 𝐼 = 𝐼𝑚𝑟𝑒𝑓
, 𝑉 = 𝑉𝑚𝑟𝑒𝑓

  𝑎𝑛𝑑 𝑢𝑠𝑖𝑛𝑔 (27) (𝑓2):  
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𝐼𝑚𝑟𝑒𝑓
+  𝐼𝑜 (𝑒𝑥𝑝 (

𝑉𝑚𝑟𝑒𝑓
 +  𝑅𝑠 𝐼𝑚𝑟𝑒𝑓

𝑁𝑐𝑎𝑟𝑒𝑓𝑉𝑡
) − 𝑒𝑥𝑝 (

 𝑉𝑜𝑐𝑟𝑒𝑓
 

𝑁𝑐𝑎𝑟𝑒𝑓𝑉𝑡
)) + (

𝑉𝑚𝑟𝑒𝑓
+  𝑅𝑠 𝐼𝑚𝑟𝑒𝑓

− 𝑉𝑜𝑐𝑟𝑒𝑓

𝑅𝑠ℎ
) = 0 

 

 

(29) 

 𝐴𝑡 
𝑑𝐼

𝑑𝑉
|𝑉=𝑉𝑜𝑐𝑟𝑒𝑓

=
−1

𝑅𝑠𝑜
 (𝑓3): 

𝐼𝑜 (
1 

𝑁𝑐𝑎𝑟𝑒𝑓𝑉𝑡
𝑒𝑥𝑝(

 𝑉𝑜𝑐𝑟𝑒𝑓
 

𝑁𝑐𝑎𝑟𝑒𝑓𝑉𝑡
)(1 −

𝑅𝑠

𝑅𝑠𝑜
)) +

1

𝑅𝑠ℎ
(1 −

𝑅𝑠

𝑅𝑠𝑜
) − 

1

𝑅𝑠𝑜
= 0 

 

 

 

(30) 

 𝐴𝑡 
𝑑𝐼

𝑑𝑉
|𝐼=𝐼𝑠𝑐𝑟𝑒𝑓

=
−1

𝑅𝑠ℎ𝑜
 (𝑓4): 

𝐼𝑜 (
1 

𝑁𝑐𝑎𝑟𝑒𝑓𝑉𝑡
𝑒𝑥𝑝(

𝐼𝑠𝑐𝑟𝑒𝑓
 

𝑁𝑐𝑎𝑟𝑒𝑓𝑉𝑡
)(1 −

𝑅𝑠

𝑅𝑠ℎ𝑜
)) +

1

𝑅𝑠ℎ
(1 −

𝑅𝑠

𝑅𝑠ℎ𝑜
) − 

1

𝑅𝑠ℎ𝑜
= 0 

 

 

(31) 

 

The Jacobian matrix is obtained from the partial derivatives of the functions given in equations 

(29)-(32): 

 𝐽 =

[
 
 
 
 
 
 
 
𝜕𝑓1

𝜕𝐼0

𝜕𝑓1

𝜕𝑎𝑟𝑒𝑓

𝜕𝑓1

𝜕𝑅𝑠

𝜕𝑓1

𝜕𝑅𝑠ℎ

𝜕𝑓2

𝜕𝐼0

𝜕𝑓2

𝜕𝑎𝑟𝑒𝑓

𝜕𝑓2

𝜕𝑅𝑠

𝜕𝑓2

𝜕𝑅𝑠ℎ

𝜕𝑓3

𝜕𝐼0

𝜕𝑓3

𝜕𝑎𝑟𝑒𝑓

𝜕𝑓3

𝜕𝑅𝑠

𝜕𝑓3

𝜕𝑅𝑠ℎ

𝜕𝑓4

𝜕𝐼0

𝜕𝑓4

𝜕𝑎𝑟𝑒𝑓

𝜕𝑓4

𝜕𝑅𝑠

𝜕𝑓4

𝜕𝑅𝑠ℎ]
 
 
 
 
 
 
 

 

 

 

 

(32) 

 

The Newthon-Raphson solution for (𝐼𝑜=𝐼𝑜𝑟𝑒𝑓 ,  𝑎𝑟𝑒𝑓,  𝑅𝑠 , 𝑅𝑠ℎ) is then used to calculate 

(𝐼𝑝ℎ=𝐼𝑝ℎ𝑟𝑒𝑓
) using equation (27). 

 

B.  For the single diode, four parameter model with unknowns (𝑰𝒑𝒉𝒓𝒆𝒇
, 𝑰𝒐𝒓𝒆𝒇 ,  𝒂𝒓𝒆𝒇,  𝑹𝒔 ): 

𝐼 − 𝐼𝑝ℎ +  𝐼𝑜 (𝑒𝑥𝑝 (
𝑉 + 𝑅𝑠 𝐼

𝑁𝑐𝑎𝑉𝑡
) − 1) = 0 

 

 

(33) 

 𝐴𝑡 𝐼 = 0,  𝑉 = 𝑉𝑜𝑐𝑟𝑒𝑓
: 

𝐼𝑝ℎ =  𝐼𝑜 (𝑒𝑥𝑝(
 𝑉𝑜𝑐𝑟𝑒𝑓

 

𝑁𝑐𝑎𝑟𝑒𝑓𝑉𝑡
) − 1) 

 

 

 

(34) 
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 𝐴𝑡 𝐼 = 𝐼𝑠𝑐𝑟𝑒𝑓
, 𝑉 = 0 𝑎𝑛𝑑 𝑢𝑠𝑖𝑛𝑔 (34) (𝑓1): 

𝐼𝑜 (𝑒𝑥𝑝 (
 𝑉𝑜𝑐𝑟𝑒𝑓

 

𝑁𝑐𝑎𝑟𝑒𝑓𝑉𝑡
) − 𝑒𝑥𝑝(

𝐼𝑠𝑐𝑟𝑒𝑓
𝑅𝑠 

𝑁𝑐𝑎𝑟𝑒𝑓𝑉𝑡
)) − 𝐼𝑠𝑐𝑟𝑒𝑓

= 0 

 

 

 

 

(35) 

 𝐴𝑡 𝐼 = 𝐼𝑚𝑟𝑒𝑓
, 𝑉 = 𝑉𝑚𝑟𝑒𝑓 

𝑎𝑛𝑑 𝑢𝑠𝑖𝑛𝑔 (34)(𝑓2): 

 𝐼𝑜 (𝑒𝑥𝑝 (
𝑉𝑚𝑟𝑒𝑓

 +  𝑅𝑠 𝐼𝑚𝑟𝑒𝑓

𝑁𝑐𝑎𝑟𝑒𝑓𝑉𝑡
) − 𝑒𝑥𝑝 (

 𝑉𝑜𝑐𝑟𝑒𝑓
 

𝑁𝑐𝑎𝑟𝑒𝑓𝑉𝑡
)) − 𝐼𝑚𝑟𝑒𝑓

 = 0 

 

 

 

 

 

(36) 

 𝐴𝑡 
𝑑𝑃

𝑑𝑉
|𝐼=𝐼𝑚𝑟𝑒𝑓,𝑉=𝑉𝑚𝑟𝑒𝑓

(𝑓3): 

 

𝐼𝑜 (
1 

𝑁𝑐𝑎𝑟𝑒𝑓𝑉𝑡
𝑒𝑥𝑝 (

𝑉𝑚𝑟𝑒𝑓
 +  𝑅𝑠 𝐼𝑚𝑟𝑒𝑓

 

𝑁𝑐𝑎𝑟𝑒𝑓𝑉𝑡
)(1 −

𝐼𝑚𝑟𝑒𝑓

𝑉𝑚𝑟𝑒𝑓

𝑅𝑠 )) −
𝐼𝑚𝑟𝑒𝑓

𝑉𝑚𝑟𝑒𝑓

= 0 

 

 

 

(37) 

 

The Jacobian matrix is obtained from the partial derivatives of the functions given in equations 

(35) – (37): 

𝐽 =  

[
 
 
 
 
 
 
𝜕𝑓1
𝜕𝐼0

𝜕𝑓1
𝜕𝑎𝑟𝑒𝑓

𝜕𝑓1
𝜕𝑅𝑠

𝜕𝑓2
𝜕𝐼0

𝜕𝑓2
𝜕𝑎𝑟𝑒𝑓

𝜕𝑓2
𝜕𝑅𝑠

𝜕𝑓3
𝜕𝐼0

𝜕𝑓3
𝜕𝑎𝑟𝑒𝑓

𝜕𝑓3
𝜕𝑅𝑠]

 
 
 
 
 
 

 

 

 

 

(38) 

 

To reduce the modeling complexity, the size of the Jacobian is reduced by using Rs given by 

equation (15). The Newthon-Raphson solution for (𝐼𝑜=𝐼𝑜𝑟𝑒𝑓 ,  𝑎𝑟𝑒𝑓) is then used to calculated 

(𝐼𝑝ℎ=𝐼𝑝ℎ𝑟𝑒𝑓
) using equation (34).  

𝐽 =  

[
 
 
 
 
𝜕𝑓1
𝜕𝐼0

𝜕𝑓1
𝜕𝑎𝑟𝑒𝑓

𝜕𝑓2
𝜕𝐼0

𝜕𝑓2
𝜕𝑎𝑟𝑒𝑓]

 
 
 
 

  

(39) 

 


