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Power interfaces for DG and storage

Power interfaces are the point of physical interaction between
DG and the electrical infrastructure, usually the local electric
grid.

* The power interface is designed to interact with and serve

between the DER and the power system.
* The DG unit studied in this presentation is a battery systems.

Distribution networks are becoming increasingly ‘smarter’, as

well as more complex:
* Advanced control strategies to manage such networks are

becoming necessary.
* These strategies need to be thoroughly tested and validated,

before they can be implemented in a real network.

*Arthur D. Little, “Electrical Interface Complexity with Respect to Interface Configuration”, White Paper, 1999.
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Development Overview of Battery Inverter and test

procedure

Design

O Design Requirements

O Interfacing Lead-acid battery

bank with AC bus
o Grid connected Operation
o [slanded Operation
o Bidirectional Power flow
o Grid Support Functions

o Battery Management
System (BMS)

o Integrated protection
functionalities

o Communication interface

U Simulation Validation

* [Islanded mode
* PI SRRF Voltage
Contro
* PR Voltage Control

* H-Infinity Control
” *  Grid-connected mode
* PI SF Voltage Control
* Virtual Resistance
e 2-DoF
O CHIL Tests

o [sland operation

o Grid connected
operation

o Grid support
functionalities

Testing

U Hardware tests
O Island operation
* PI SRRF Voltage Control
* PR Voltage Control
* H-Infinity Control
O Grid connected operation

* PI SF Voltage Control
* Virtual Resistance
* 2-DoF

O Power-Hardware-in-the
Loop Tests
O @Grid support functionalities
O Integrated protection
O Communication interface



Overview of the CHIL & Hardware test setup
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Overview of the PHIL setup

* The operation of the developed battery inverter have tested in the ICCS laboratory.

PHIL test set up in ICCS laboratory
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Lead-acid battery bank

DC-DC Bidirectional Converter
DC-AC H-Bridge Inverter

Low pass filter

Control Unit (DSP, RT-PC, FPGA)

.. Some Control Design
Considerations...

Stability under all operational
conditions (Resonance issues, Non-
linearity issues, Time delays etc.).

Low current harmonic distortion
Good dynamic performance
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Battery Inverter — LCL filter design considerations (1/2)
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For high power, low switching frequency applications
LCL filter can provide switching ripple reduction with:
- Lower cost & weight
=> Switching ripples reduction

....compared to L filter

BUT: Current control stability issues due to resonance.
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Battery Inverter — LCL filter design considerations (2/2)

Inductor Side
Passive Damping Techniques: Virtual Resistance
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Design of the power interfaces: Battery inverter (1/2)

* Grid connected operation

PI-SRRF technique (without active damping):

Ci“n;:zr;@ | PI-SRRF Voltage Control e Stable with the inverter current feedback.
i : : e Unstable with the grid current feedback.
J; }) e Stabile for low bandwidth controller.

Virtual Resistance technique:

e Capacitance Virtual Resistance has better
damping performance in regards to others.

;@}9 e Grid current feedback stability is achieved

i e Extra sensor is required (Voltage or current), or
estimating the state variable (virtual flux)

Virtual -

2 Degree of freedom technique:

e Excellent damping performance (98%)
: e Difficult tuning process

5 I : e Better THD performance

PWM




Design of the power interfaces: Battery inverter (2/2)

* Islanded operation

P PI SRRF Voltage Control PI-SRRF technique (without active damping):
, e Simple design
>J inv .
S| Ve :oaa e Relatively good performance

Proportional - Resonant control strategy:
PR Voltage Control e Based on ap-frame (stationary)
L R e Active damping with capacitor current feedback

N/L’“JMQL e More robust behavior
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Hardware test results of the Battery inverter
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Tests for Droop Curves Verification
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ROCOF
DQ/Poer (%) Island Detection Time Island Detection Time
Detection (seconds) Detection (seconds)
NO - YES 0.259
NO - YES 0.117
NO - YES 0.108
YES 0.624 YES 0.056
YES 0.986 YES 0.058
YES 0.402 YES 0.051
YES 0.624 YES 0.047
YES 0.341 YES 0.044
YES 0.431 YES 0.035
YES 0.280 YES 0.037
YES 0.368 YES 0.043

PHIL tests for Islanding Detection Methods Evaluation
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Conclusions

* A design and testing methodology that aims to test power electrinics components
and control algorithms, in all their development stages, using advanced laboratory
setups has been proposed

* The design process combines the long-established methods with HIL approaches in
order also to combine the advantages of each method

* Power electronics design is complex procedure that need great attention by the
designer on each development stage

* HIL simulation is an efficient tool for DER inverter testing

* The use of HIL simulation for Loss of Main detection can be considered for future
standardized testing



Thank You!

EriGrid Workshop, “Advanced power system testing using Hardware in the Loop
simulation”, Athens, Greece — 23 Nov 2018
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