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Power interfaces for DG and storage

Electrical Interface Complexity with Respect to 
Interface Configuration *.

* Arthur D. Little, “Electrical Interface Complexity with Respect to Interface Configuration”, White Paper, 1999.

Power interfaces are the point of physical interaction between 
DG and the electrical infrastructure, usually the local electric 
grid.
 The power interface is designed to interact with and serve 

between the DER and the power system.
 The DG unit studied in this presentation is a battery systems.

Distribution networks are becoming increasingly ‘smarter’, as 
well as more complex:
 Advanced control strategies to manage such networks are 

becoming necessary.
 These strategies need to be thoroughly tested and validated, 

before they can be implemented in a real network.
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Development Overview of Battery Inverter and test 
procedure
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 Design Requirements 

o  Interfacing Lead-acid battery 
bank with AC bus

o  Grid connected Operation  

o  Islanded Operation

o  Bidirectional Power flow

o  Grid Support Functions

o  Battery Management 
System (BMS)

o  Integrated protection 
functionalities

oCommunication interface

  Simulation Validation
•  Islanded mode

 PI SRRF Voltage 
Contro

 PR Voltage Control
 H-Infinity Control

•  Grid-connected mode
 PI SF Voltage Control
 Virtual Resistance
  2-DoF

  CHIL Tests
o Island operation
o Grid connected 

operation 
o Grid support 

functionalities 

 

 Hardware tests
o  Island operation

•  PI SRRF Voltage Control

•  PR Voltage Control

•  H-Infinity Control
o  Grid connected operation

•  PI SF Voltage Control
•  Virtual Resistance
•   2-DoF

 Power-Hardware-in-the
 Loop Tests
o  Grid support functionalities
o  Integrated protection
o  Communication interface 

Testing Design
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Overview of the CHIL & Hardware test setup

Hardware test set up in ICCS laboratoryCHIL test set up in ICCS laboratory
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• The operation of the developed battery inverter have tested in the ICCS laboratory. 

Overview of the PHIL setup 
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Battery Inverter - Storage Power Interface

EriGrid Workshop,  Athens, Greece – 23 Nov 2018

 Lead-acid battery bank 
 DC-DC Bidirectional Converter
 DC-AC H-Bridge Inverter
 Low pass filter
 Control Unit (DSP, RT-PC, FPGA )

… Some Control Design 
            Considerations…

 Stability under all operational 
conditions (Resonance issues, Non-
linearity issues, Time delays etc.).

 Low current harmonic distortion
 Good dynamic performance



Battery Inverter –  LCL filter design considerations (1/2)
7

For high power, low switching frequency applications 
LCL filter can provide switching ripple reduction with:
 Lower cost & weight
 Switching ripples reduction                                              

         ….compared to L filter

BUT:  Current control stability issues due to resonance.

Requires Damping

…for power quality and stability improvement
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Passive Damping Techniques:
 Actual passive components placed on filter.
          performance & efficiency degradation.    
         

Active Damping Techniques:
Modification of the current control algorithm.

• Synchronous reference frame PI-based
• Cascaded double-loop
• Grid-side current only using HP feedback
• Filter-based (Notch Filters)
• Optimal control algorithms 
• Virtual resistance

Implemented  

Battery Inverter –  LCL filter design considerations (2/2)
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Design of the power interfaces: Battery inverter (1/2)
 Grid connected operation
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Virtual Resistance

2DoF (PI-D)

PI-SRRF technique (without active damping):
 Stable with the inverter current feedback.
 Unstable with the grid current feedback. 
  Stabile for low bandwidth controller. 
 
Virtual Resistance technique:
 Capacitance Virtual Resistance has better 

damping performance in regards to others. 
 Grid current feedback stability is achieved
 Extra sensor is required (Voltage or current), or 

estimating the state variable (virtual flux)

 2 Degree of freedom technique:
 Excellent damping performance (98%)
 Difficult tuning process 
 Better THD performance
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 Islanded operation

Design of the power interfaces: Battery inverter (2/2)

PI-SRRF technique (without active damping):
 Simple design
 Relatively good performance
 
Proportional - Resonant control strategy:
 Based on αβ-frame (stationary) 
 Active damping with capacitor current feedback
 More robust behavior

H-infinity Loop shaping approach: 
 Optimizes the response near the system 

bandwidth.
 Based on αβ stationary frame 
 Multiplicative uncertainty, taking in to 

concentration all the possible models
 Robust performance
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Hardware test results of the Battery inverter

L1 L2

Cf

R1 R2

Iinv Ig

Vc

+ Vg

+

-

Vinv

+

-

+ -

Iref

Current
ControlerPWM

Vinv

3 leg bridge

V grid

L1 L2

Cf

R1 R2

Iinv Ig

Vc

+ Vg

+

-

Vinv

+

-

+ -

Iref

Current
Controler

PWM

Vinv

3 leg bridge

V grid

ZAD

- +

Virtual
Impedance

V grid

L1 L2

Cf

R1 R2

Iinv Ig

Vc

+ Vg

+

-

Vinv

+

-

+ -

Iref

Current
Controler

PWM

Vinv

3 leg bridge

HPF

- +

L1 L2R1 R2

Iinv ILoad

Vc

Vinv

+

-

+ -

Vcap_ref

PI
Current
SRRF

PWM

Vinv

3 leg bridge

Cf
+

Rf

LLoad

RLoad

PI 
Voltage
SRRF+ -

Iinv_ref

L1 L2R1 R2

Iinv ILoad

Vc

Vinv

+

-

+ -

Vcap_ref

PR
Current

Controller
PWM

Vinv

3 leg bridge

Cf
+

Rf

LLoad

RLoad

PR
Voltage

Controller+ -

Iinv_ref

- +

kAD

Ic

L1 L2R1 R2

Iinv ILoad

Vc

Vinv

+

-

Vcap_ref

KPWM
Vinv

3 leg bridge

Cf
+

Rf

LLoad

RLoad

+ -

Ic

• PI SRRF Voltage Control

• Virtual Resistance

• 2DoF

• PI SRRF Voltage Control

• PR Voltage Control

• H-Infinity Control
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Tests for Droop Curves Verification
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PHIL tests for Islanding Detection Methods Evaluation
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DP ≈ 0 UOV/UOF ROCOF 

DQ/PDER (%) Island 

Detection 

Detection Time 

(seconds) 

Island 

Detection 

Detection Time 

(seconds) 

0 NO - YES 0.259 

1 NO - YES 0.117 

-1 NO - YES 0.108 

2 YES 0.624 YES 0.056 

-2 YES 0.986 YES 0.058 

3 YES 0.402 YES 0.051 

-3 YES 0.624 YES 0.047 

4 YES 0.341 YES 0.044 

-4 YES 0.431 YES 0.035 

5 YES 0.280 YES 0.037 

-5 YES 0.368 YES 0.043 

 



Conclusions

● A design and testing methodology that aims to test power electrinics components 
and control algorithms, in all their development stages, using advanced laboratory 
setups has been proposed 

● The design process combines the long-established methods with HIL approaches in 
order also to combine the advantages of each method

● Power electronics design is complex procedure that need great attention by the 
designer on each development stage

● HIL simulation is an efficient tool for DER inverter testing

● The use of HIL simulation for Loss of Main detection can be considered for future 
standardized testing
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Thank You!
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