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Background and Motivation
What is Hardware-in-the-Loop?

1. A simulation model of a system
executed on a Digital Real-Time
Simulation (DRTS) in real-time
mode

2. One or more salient components
of that system existing outside of
that DRTS

3. The DRTS simulation interacts with
the salient component(s) outside
the DRTS and vice versa
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Lab-based Assessment Methods (JRA 3.2)
Activities and tasks schema
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International
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world-based
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Co-simulation / simulator coupling
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Controller & Power HIL

Laboratory experiments
Cyber-security analysis and ICT-based
assement methods

v

Distributed and Integrated
Research Infrastructure (JRA1, JRA4)
Installations for
Component characterication and small-
scale system evaluation (Micro Grids)
System integration and large-scale
system testing
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Trans-national
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ERIGrid Research
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e Industrial user
groups /
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e Academic user
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e Project
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(European &
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Lab-based Assessment Methods (JRA 3.2)
Status Quo of HIL: Co-simulation of Power and ICT systems

B Joint simulation of various simulators in an holistic test-case
Detailed and validated models with tailored solvers
Shared computational load ﬁ -4

Model privacy wd|
B Can be done ad-hoc or with Orchestrator |

|tz
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Lab-based Assessment Methods (JRA 3.2)
Challenging the Status Quo: HIL and Co-Simulation Integration

B Advantages:
Integrated multi-domains using Co-Simulation
Realistic behaviors of hardware
Collaboration multi-research-infrastructure in a holistic experiment

M Status-quo: Integration of HIL to Co-Simulation
Integration PHIL to Co-Simulation presents many challenges
Synchronization may not be possible
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Lab-based Assessment Methods (JRA 3.2)

ERIGrid Approach to Address Challenges: Extending HIL Capacity

“* 3 approaches for integration of HIL to co-simulation framework

1. « Offline » Co-Simulation Approach

B Offline simulation is converted to FMU and integrated directly to the RT
simulator’s model -> forced to run at RT simulators time steps.

B Need of compilation verification (some DRTS require to compile the FMU)
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Lab-based Assessment Methods (JRA 3.2)
ERIGrid Approach to Address Challenges: Extending HIL Capacity

2. « Online » Co-Simulation Approach — Without Synchronization

B Lab-link Architecture.

offline
simulation

task 1

ts01

lab-link

(offline and
real-time
simulation
interface)

real-time tsox ... offline sample rate
simulation trrx ... real-time sample rate
software power interface PI, || hardware 1
lo,s Zy, r 1 i1
Vi, 1
Uo,|T Ug ¢+ T@ '><>lu1'h V1,1 Zy)
tsRT1
software i| power interface PI,, || hardware 2
lon Zuu [ 1 1,1
Vi I
Uo,uI Uy 1+ I@ '{)lul'f” V1,11 Zo
tsRT2

Sample rates of subsystems linked via lab-

link:

a) offline tasks: tg 5(y.1) > 100 ms;
operating sample rates [100 ms; 2 s]

b) lab link: tg,, > 1 ms; operating sample
rates [100 ms; 2 s]

c) real-time simulation: tg gt < 1ms (up to
100ns); operating sample rates [100
ns; 1 msj

AT
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Lab-based Assessment Methods (JRA 3.2)

ERIGrid Approach to Address Challenges: Extending HIL Capacity

3. « Online » Co-Simulation Approach — With Synchronization

B OPSim Solution

Real-time grid
simulator with

Distribution grid

Transmission grid

FTP-server containing

\
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HIL interfaces optimization optimization time series and forecasts
Is. I~ taal. }
l I [ & |‘.
[ 3,

Proxy Proxy Proxy : :

: 7 5 Ll
Client Client Client |

| 1 |

( Message bus
- = = =! standard
IEE
T — N P ——
— e _
_______
Mastercontrol-
DNV-GL program GUI power plant operative software

Flexible Co-Simulation environment for modelling
multi-actor power systems (e.g. DSO-TSO-grid
interactions)

Real-time mode for controller-in-the-loop (CIL) tests
and offline-mode for seasonal simulation time spans

Opal-RT can be connected to OpSim, which allows
us to combine HIL tests with Co-Simulations
(asynchronous interface)

Accessible via various interfaces like IEC 61850,
CIM, propriety data models and also via Webservice
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Integration of HIL to Co-simulation
Objectives

B Assess delay limitations for the co-simulation and set boundaries in the
environment OPSim.

B Determine a holistic performance of the Coordinated Voltage Control
(CVQ) algorithm through the co-simulation environment.

B Combination of computation power in different Rls.
B Use of confidential and private models.

\
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Integration of HIL to Co-simulation
Test Case TC1a Description

M Purpose of Investigation (Pol)

Assessment of the delay impact on co-simulation
with OpSim through the cloud.

Performance of the communication in real-time
simulation.

Holistic CVC performance.
B Object under Investigation (Oul)
CVC algorithm.

Cigre Low Voltage Grid Benchmark in OPAL-RT
(Cigre LV).

Co-simulation environment (OpSim).

CIGRE LV

OPSIM Message Bus @

CvC

\
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Integration of HIL to Co-simulation
Test Case TC1a Description

B Target Metrics
Communication latency.
CVC OPF convergence.
Voltage, P, Q response.

B Variability Attributes

Round-trip time, script execution convergence, steady state on
simulated grid, system response in steady state after a controller
reference change.
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Integration of HIL to Co-simulation
Test Case TC1a Diagram
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Integration of HIL to Co-simulation
Test TC1a Specifications

B TCla.1
Delay measurement with dummy controller

In order to set the boundaries of the OpSim platform regarding time
frames and to assess delays, two experiments will be made:

Delay measurement with dummy controller locally implemented
Delay measurement with dummy controller remotely implemented
m TC1a.2
Remote HIL CIGRE LV grid response to CVC set-points.
One experiment will be held to verify the CVC performance:
Remote HIL CIGRE LV grid response to CVC set-points
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Integration of HIL to Co-simulation

TC1a.1: Delay measurement with dummy controller

B The main purpose is to determine the boundaries for the OpSim
environment and assess the the ground reference of delay present
in the communication between the two simulators. (local and

remote)

Controller
Script PC

OPSIM Message Bus (]

Type1:

OPAL-RT -

OpSim -

Proxy Client -
Controller (locally)

Type2:

OPAL-RT -

OpSim -
WebProxy Client -
Internet -
Controller (locally)

Type3:

OPAL-RT -

OpSim -

WebProxy Client -
Internet -
Controller (remote)
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Integration of HIL to Co-simulation

TC1a.1: Delay measurement with dummy controller

OPAL-RT RTT
P
T1
:+(Nl>l}-d11 0(N1J1)»dz1 A
i O Q2di; P T D2,
e I — T + 1 =
{‘ Run [idle[ T Run  [idle[ Run | |d‘|e K f:tun [ide [ Run  [idie[ Run ]! Idle [ Run  [idle |
| | | |
OPSIM | ; X1 ‘ X2 ! X3 | F Y1 Xa | ‘ Xs [ X3 Y; I
Message Bus ‘ X1 J Yi : X4 Ya ‘ s p
: j Run [ ‘; Idle | J Run ' i Idle
d> ds "da! 1 d2 ds "d'
+(N2-1)-d22 : +(N2-1)-d22
Controller T2 ‘ T2
® d,: Channel delay between OPAL-RT and OpSim
MB.

® d,,: Additional delay due to multiple variables
writing from the OPAL-RT.

® d,: Channel delay between OpSim MB and
Controller algorithm.

B d,,: Additional delay due to multiple variables
writing from the controller.

d,: Time convergence of the controller
aI3 orithm.

N,: Number of variables written by the
OPAL-RT.

N, : Number of variables written by the
controller.

T;: Publish rate between OPAL-RT and
OpSim MB.

T,: Publish rate between OpSim MB and
Controller algorithm.

®,: Asynchronous time gap between
writing of the OPAL-RT and reading of
the controller.

®@,: Asynchronous time gap between
writing of the controller and reading of
the OPAL-RT.
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Integration of HIL to Co-simulation
TC1a.1: Delay measurement with dummy controller

OPAL-RT OpSim Controller
®m d,: Time convergence of the controller
Y N ol o-ds ali orithm.
®  N,: Number of variables written by the
_‘d OPAL-RT.
- ® N, : Number of variables written by the
controller.
e~ || 7925 | -t || oS ® 7,: Publish rate between OPAL-RT and
OpSim MB.
| : [ [
® d,: Channel delay between OPAL-RT and OpSim é-énilrjmgpar%tgrﬁﬁmeen OpSim MB and
MB. '
H : '
® d,,: Additional delay due to multiple variables &Zitﬁ\ggﬁ‘qrhoengg;tﬂ[?{% ggg E:;\éviﬁgnof
writing from the OPAL-RT. the controller.
® d,: Channel delay between OpSim MB and ®  @,: Asynchronous time gap between
Controller algorithm. writing of the controller and reading of
B d,,: Additional delay due to multiple variables the OPAL-RT.

writing from the controller.
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Integration of HIL to Co-simulation
TC1a.1: Delay measurement with dummy controller

OPAL RT -- OpSim (Type1) ; OPAL RT -- OpSim (Type2) ; OPAL RT -- OpSim (Type3) ;
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Integration of HIL to Co-simulation

TC1a.1: Delay measurement with dummy controller

Var.

d

d11

d2

Type
Measured value (Type 1)
Measured value (Type 2)
Measured value (Type 3)
Measured value
Measured value (Type 1)
Measured value (Type 2)
Measured value (Type 3)
Measured value

Measured + Performance-based

value
User-defined value

User-defined value
User-defined value

User-defined value

Estimated value
Random value
Complementary value
Estimated value

Value
43.78 ms
42.37 ms
16.53 ms
0.32 ms
33.4 ms
27.79 ms

64 ms
16.53 ms

>190.1 ms
172
9a
500ms, 1s, 2s,3s,4s2
5s2

N/A

N/A

N/A
O, + O,

Certainty
99.14 %
99.09 %
99.03 %
99.12 %
99.11 %
99.65 %
99.55 %
99.05 %

95.7 %

N/A
N/A
N/A

N/A

N/A
N/A
N/A
N/A

Boundaries/ Conditions
Client conn. through Eth

Client conn. through Eth
Client conn. through Eth
N/A

Client conn. through Eth
Clients conn. through Eth

Clients conn. through Eth
N/A

Controller response time must be added

According to experiment
According to experiment
T, >d;+ (N;-1)-d;,
T,>T,
T, > 2-d,+ds+ (N,-1)-d,,
RTT = 2.d, + 2-d, + d5 + ® + (N,-1)-d,, + (N,-1)-d4,

0<0,<T,
0<0,<T,
0<d<2T,

a Values for CVC experiments
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Integration of HIL to Co-simulation
TC1a.1: Delay measurement with dummy controller

B Typel, RTT of 610 ms = 500ms + 110 ms.

B Type2, congruently with the Type1, except of 6
some outliers and a spike (transaction 51). o

B Type 3, 1200 ms, and spikes of 1610 ms. 4 |

|
|
B [n real-time mode OpSim can only guarantee the " | 3
delivery of packages and their correct order, but
it cannot solve underlying hardware or network o o " - ” o
prOblemS_ Transaction

Opal RT RTT Publish rate 500 ms

Local
Local with WebProxy
Remote

RTT [s]

M. Vogt, F. Marten, J. Montoya, C. Tobermann, M. Braun, “A
REST based co-simulation interface for distributed simulations”,
POWERTECH 2019
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Integration of HIL to Co-simulation
TC1a.2: Remote HIL CIGRE LV grid response to CVC set-points.

B The main purpose is to determine the T""Wbp
response of the Real Time Simulator models e
to the reference set-points provided by the

CVC controller.

B The convergence of the OPF in the CVC
algorithm is analyzed to determine the limit
of the refresh rate to publish data in the
OpSim Message Bus and avoid data losses.

Real Time Simulator
(RTS)
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Integration of HIL to Co-simulation
TC1a.2: Remote HIL CIGRE LV grid response to CVC set-points.

20 kV ‘
The feeder is based on a benchmark low pandinel— ?f @ﬁ

voltage microgrid. It was implemented in [ ovemesains

Circuit Breaker 4x120 mm? Al ){LF‘E
instead of fuses twisted cable

the OPAL-RT simulator with the following G
modifications: o

consumer _
W, 1,240 A 3+N+PE_ 4x6 mm? Cu Possible neutral bridge
L1 !

= = Snci15kvA X 1H—7—0 o adjacent LV ne
B MV/LV transformer equipped with OLTC, Frw TS e ed

Flywheel storage [~ — 4x16 mm? cu 52 T
(or batteries) - /AB—_E I I -

3@, 30 kW g =

B |length of all lines doubled, N\ E

Circrit Breaker

Possible sectiona lizing CB Ma 'IO;B"I?N
1 M 2 Cu 3+N+PE/. .e ~ '?\ .
B DER units replaced by PVs, crog ot s ZXMNET o 0g 1y AN
sS 2530‘:? : Appartment building
fl h | I Wind Turbine i1 () [>7 IN-PE [ ] 5iio, ::;43:
B flywheel storage replaced by BESS, - H P
Photovoltai D.-_| ]
10, 4x 2_k.".-' ﬂ = 4rm|||—.
L] 400
B symmetrical 3ph network @ Ts=200 ps. sy 0 | o 5htE s s
o m: 1.=40 A . m
SS 2"‘51‘:.4 ﬂ# 4x16 mm? Cu = %:‘5'133\:'&
Fuel Cell { m ! o
S. Papathanassiou, N. Hatziargyriou, K. Strunz.: “A benchmark low voltage microgrid” S CIgiN Y ” = L[} ] Photovoltaics

AR
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Integration of HIL to Co-simulation

TC1a.2: Remote HIL CIGRE LV grid response to CVC set-points.

The CVC algorithm’s main function is the
solution of an OPF problem.

B Inputs (17 inputs):
Active and reactive powers of loads.
Active power of PVs.
State-of-charge (SoC) of BESS.
Tap position of the OLTC.

B Outputs (9 outputs):

Active and reactive powers of the BESS|

Reactive power of the PV inverters.
Tap position of the OLTC.

M. Maniatopoulos, D. Lagos, P. Kotsampopoulos, N. Hatziargyriou,

P, _dicchraos = Phe *
bat.charge — dischrage bat, nom ASOCH]&X

SoC — SoC¢

X

+H;|tapnew — tapcurrentl

A = [V]
va.]

m?n f(l’} = W, Z Zploue& ij + w; 27(VR - 1)1

i=1j=1

va.z va_3 QP\.’_;L Tap_change S]
Plosse.ﬂ,, ij= = Gg_;‘ * [Vf + Vj — ZV!-V;-COS 5”-]

Vlz 61 511 Pbat Qbat

Voltage constraints
V] = 1

PV inverter constraints
|Opv.i| < Ppy.i # tan(cos™(0.8))

2 2 2
va_{ + va_:' < Spv,lwm_:'

0" < ¢; <360

Line current constraints OLTC constraints

|Y * V V | < 1 timit —8 < Tap_changes < 8

“Combined control and power hardware in-the-loop simulation for testing smart grid control algorithms”
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Integration of HIL to Co-simulation
TC1a.2: Remote HIL CIGRE LV grid response to CVC set-points.

Simulation

|||||||||||||||||||||||
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Integration of HIL to Co-simulation

TC1a.2: Remote HIL CIGRE LV grid response to CVC set-points.

Simulation Simulation
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Integration of HIL to Co-simulation

TC1a.2: Remote HIL CIGRE LV

Simulation
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grid response to CVC set-points.
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Integration of HIL to Co-simulation
TC1a.2: Remote HIL CIGRE LV grid response to CVC set-points.

Simulation 40 — Simulation
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Integration of HIL to Co-simulation

TC1a.2: Remote HIL CIGRE LV grid response to CVC set-points.
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Integration of HIL to Co-simulation
Conclusion

B OpSim is able to interconnect simulators in different research and
exchange of information suitable for applications of low-bandwidth
grid voltage control on real time.

B The presented estimations and boundaries provide a way to analyze
beforehand if a real-time co-simulation experiment can be performed
and which are the user-defined values, as number of variables and
publishing rates, that can be defined for particular studies.

B The results presented show an accurate response compared to a
reference software simulation test, confirming the real-time
capabilities of OpSim for geographically distributed co-simulation.
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Thank you for your attention!
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