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Abstract: Islanded microgrids are small networks that work independently from the main grid.
The frequency and voltage in islanded microgrids are affected directly by the output power of
distributed generators and power demand variations. In this work, a real-time driven primary
regulation, which relies on optimized P-f droop coefficients, is proposed. In all operating conditions,
it minimizes the power losses for islanded microgrids. The proposed configuration will allow
the optimization modules to interact with each other and adjust parameters producing a suitable
power sharing among generators. The methodology is tested based on a hardware-in-the-loop
experimental set-up where distributed generators are connected to a group of loads. A parametric
analysis is implemented for verification of the effectiveness of the proposed configuration as well as
the improvement of the system reliability.
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1. Introduction

Microgrids are small- or medium-scale electric distribution networks that include multiple loads,
distributed generation units, and storage systems. These distributed generation units provide energy
in response to the load demand at different levels along the day. The distributed generation units are in
most cases renewable energy-based, and loads are connected through a physical network. Dispatchable
generators are operated by an advanced control technology to distribute the power flows in the system
and provide energy usage information [1].

In microgrids, the energy efficiency and reliability of supply are improved by reducing the
transmission length and integrating distributed generators, and, as a result, the environmental impact
is decreased. Microgrids (MGs) can be operated in either grid-connected or islanded mode [2]. When
operating in grid-connected mode, microgrids purchase electricity from the main grid to balance the
power mismatch between suppliers and consumers [3] or sell unused electricity to the main grid for
maximizing the operational benefits [4]. Islanded microgrids are small power grids that suffer from
a number of problems deriving from the fluctuating behavior of some renewable-based distributed
generators (DGs). In these systems, the frequency and voltage are the main features to be controlled so
as to support the optimal power sharing among the generators [5–7]. Such power sharing is carried
out at different regulation levels, ranging from the tertiary regulation level, acting on the scale of tens
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of minutes or hours, to the secondary and primary regulation (also called droop regulation) acting at
the scale of seconds and milliseconds respectively.

In MGs, a three-level control hierarchical architecture [2] allows providing good power quality.
The three levels can be considered as separated since they act at different times.

• The primary control is usually designed to use a droop-control method to stabilize voltage and
frequency and regulate the power sharing between distributed generators in microgrids. This
control level is also used to mitigate the circulating currents between paralleled three-phase
generators’ converters that cause over-current phenomenon in the power electric devices and
damage the capacitors in milliseconds.

• The secondary control is designed to compensate for the voltage and frequency deviation caused
by the primary control. This control level has a slower dynamics response than the primary
control level and is explicated in the range of seconds. In this way, the secondary control level can
also be implemented to satisfy the power quality requirements.

• The tertiary control is the last and slower control level. It manages the power flows inside the
MG and between the MG and the main grid providing the distributed energy resources the
operating set-points. The tertiary control level also provides optimal operation setting by solving
optimization problems for minimizing power losses and operating costs.

The energy management process as a whole ensures meeting the availability of the energy resources to
customers’ power demands in an optimal way. The energy management system (EMS) receives the
loads and energy resources forecasting data, customer information/preference, policy, and electricity
market information to determine the best available controls on power flow, utility power purchases,
load dispatch, and DG or distributed energy storage scheduling [8]. In [9], the operation problem of
microgrids is modeled considering the economical, technical, and environmental issues, as well as
uncertainties related to loads, wind speed, and solar radiation and was solved using mixed-integer
non-linear programming (MINLP). In [10], a discrete-time mathematical formulation is demonstrated to
cope with the underlying uncertainty through a rolling horizon approach to optimize the management
of a microgrid.

A robust optimization algorithm for scheduling the dispatchable units is presented in [11,12].
In [13], an energy management system (EMS) acting in real time is designed to solve the economic
management problem for microgrids in both grid-connected and islanded operation modes. The
system is validated on a real-time platform for a simple system to show the improvement of the
proposed approach. Typically, energy management is implemented at the tertiary control level
and aims to optimize the operation cost of the system. However, all optimization approaches do
require a three-levels architecture in which secondary and tertiary regulation will produce profound
modifications in the operating condition.

In this paper, primary regulation also addresses the power losses minimization by an on-line
droop coefficients optimization that also accounts for frequency control. In this way, the secondary
regulation will have a less (maybe zero) impacting role and requires less energy for adjusting the
setpoints of generation units.

In the literature, the primary regulation is explicated commonly through a linear droop control
for adjusting frequency and voltage to modulate the power sharing of generators in the power system.
The inverter acts as a voltage source. The frequency and voltage adjustment of generators, which are
integrated into the microgrid, can be implemented by the droop control technique as follows [14]:

PGi − PGi0 = −KGi·( f − f0) (1)

QGi −QGi0 = −Kdi·(|Vi| −V0) (2)

where f 0 and V0 are the rated frequency and voltage respectively corresponding at the operating points
(chosen at the tertiary level) PGi0, QGi0; KGi, and Kdi are the frequency and voltage droop coefficients
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chosen based on the rated power of the DGs. Typically, KGi and Kdi are kept at constant values in the
computational process.

In order to adapt the resistive nature of branches to the droop characteristics above, a virtual
impedance is needed. However, the value of this impedance must be adjusted in order to compensate
for the variable nature of loads. For this reason, either the adjustment of droop coefficients or the
adjustment of the same virtual impedances are needed [15]. In [16], the droop method is applied
together with a suitably designed virtual impedance that can adaptively vary to eliminate the reactive
power deviation as well as to enhance the system stability in microgrids. The advantage of this
latter control method is that there is no communication between parallel converters. Moreover, the
implementation is simpler and easier. However, the drawbacks of the conventional droop control
method even with adjustments are still poor accuracy in the load sharing among generators when
supplying non-linear loads [15]. In [17], a droop control strategy is proposed to refine the sharing of
reactive power while keeping frequency and voltage in their limitations. The stability assessment
is implemented on two hybrid AC/DC cases in Matlab/Simulink to express the effectiveness of the
proposed strategy.

The continuous adjustment of droop regulation coefficients has been mentioned in some papers.
In [18], an online droop coefficient adjustment is illustrated for a direct current (DC) microgrid. The
paper shows the negative impacts of too high or too low droop coefficients on the bus-voltage and
proposed an online tuning of droop coefficients to eliminate the bus-voltage discontinuity. However,
the paper is only applied to DC microgrid where the voltage is the global indicator for microgrid’s
power balance while in alternating current (AC) microgrids, both frequency and voltage must be
considered. In [19], an online uninterruptible power supply system was introduced to control the
load sharing in a small test system based on the droop control method. In [20,21], the conventional
Q-V droop control is suitably modified to adjust droop coefficients by sparse communication among
DGs and considering the average level of reactive power injection from neighboring units. The results
are compared with those obtained with other accurate methods for reactive power sharing between
converters. In [22,23], an online droop tuning for distributed generators is proposed to coordinate the
power management using artificial neural network algorithms in both grid-connected and islanded
modes. In [24], an online generalized droop control is presented based on the demand response to
regulate the frequency in the system. However, those proposed control systems are only validated in
Matlab/Simulink simulation.

All the reviewed applications, such as the one proposed here, have some inherent latency due to
the physical communication links, in that sense online is to be intended as real-time, namely as systems
changing their state as a function of time and thus introducing some latency.

In this paper, an improved primary regulation method theoretically illustrated in [25] is expanded
and a hardware-in-the-loop (HIL) application is proposed over an online communication system to
correct the power sharing between generators and overcome the limitation of previous works.

Following this method, when the power output of renewable-based generators fluctuate
significantly, the system will collect the operational parameters in real-time the droop curve will not be
fixed anymore, it is changed on-line as the optimal power flow (OPF) is run in times that are compatible
with the operation of the microgrid. In this way, the system operates more flexibly and optimally than
traditional systems, even in the case of unpredictable or changing loads. In this work, an experimental
study is carried out in HIL simulation to test the operating characteristics of the system when the P-f
droop coefficients change to adapt to load changing conditions in 24 h. HIL simulation is a technique
that includes a part of the hardware in the simulation loop of the power system and it provides near
reality real-time testing conditions. This verification also helps to assess the reliability of the data
exchange between the optimization controller and the real-time simulator of the microgrid. Instead
of checking out the control algorithms on a mathematical model, the real hardware has been used in
real-time simulation loop to check the validity as well as ensuring the control signal delivery within
the desired sample period [26]. Therefore, real-time HIL simulations become essential for validating
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control algorithms in microgrids. The system has been modeled in real-time but the scheduling time
was scaled down from hours to minutes, not affecting the validity of obtained results.

In this work, the online OPF produces minimum losses droop coefficients, thus the objective
function of the OPF problem is to minimize the power losses in the test microgrid. Tertiary control
determines the minimum cost operating set-points of the generators. To support this integration,
the authors propose a two sub-levels architecture, already described in [27]. The first sub-level
provides a feasible and minimum cost operating point. The second sub-level solves the optimal
power flow, devising the set points of inverter-interfaced generation units and rotating machines with
minimum power losses in a point that is nearby the minimum cost operating point. In this way, the
solution provides a minimum cost and minimum power losses operating point, while satisfying the
technical constraints.

The contributions of this paper are summarized as follows:

• A structure of an online driven droop regulation system is presented to decrease operating energy
losses. The designed controller relies on the real-time measurements and online power flow
optimization within microgrids by adjusting the droop coefficients of inverter interfaced units.

• Improving the real-time dynamic response of distributed energy resources and maintaining
real-time stability for the microgrid. Indeed, the volumes of secondary and tertiary control taken
over from primary control are relieved, thus getting a more reliable operation for microgrids.

• In the application part of the work, experimental validation scenarios for a laboratory platform
with optimization controllers and power-hardware-in-the-loop setups have been implemented
to test the online operating characteristics of the system. During the experiments, the P-f droop
coefficients have changed to adapt to load changing conditions. It is proved that the proposed
architecture under realistic conditions achieves improved operation.

The paper is organized as follows: Section 2 provides a detailed specification of the optimization
problem of droop coefficients through optimal power flow. Section 3 details the communication
structure of the online driven droop regulation for minimum power losses, presenting an overview of
smart grid components including interface components, control of generation units, power flow, and
data transmission and monitoring. Finally, the detail of the experimental part of this work such as
system installation, test environment, and scenarios are considered in Section 4. Results are presented
and analyzed in Section 5. Finally, the conclusions are presented in Section 6.

2. Optimization Program

The optimization controller (OC) is the core of the proposed architecture system which sets decision
variables based on optimizing the objective function. Inside the OC, an OPF for islanded microgrids
finds, at each loading condition and/or renewable generation units injection, a minimum-losses
operating state for the generators. In islanded mode, microgrids operate independently, in this case,
the system operation is more affected by frequency disturbance due to the fluctuations of DGs output
and load demands. To cope with this problem, an optimized driven P-f primary regulation, using
variable coefficients producing minimized power losses in islanded microgrids, is proposed. Namely,
the OPF is solved keeping as variables the droop coefficients of the power converters. In what follows,
the OPF problem formulation is presented briefly; for further details, please refer to paper [25].

Consider a microgrid including n generators connected to m loads. The power generated by
generator i-th with droop regulation can be expressed as in (1) and (2), called droop buses, where
one or both KGi are variable and will be chosen optimally in the range [KGmini; KGmaxi] to minimize
an objective function. To improve the clarity of the presentation of the problem formulation, the Q-V
droop coefficients will be considered as fixed quantities.
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The generic power injection Pi(KG) at the i-th bus can be expressed as:

Pi(KG)
=

nbranch∑
j=1

|Vi|·
∣∣∣V j

∣∣∣·∣∣∣Yi j
∣∣∣· cos

(
θi j − δi + δ j

)
. (3)

In this case, the dependency with the droop coefficients KGi can be evidenced, as Pi(KG) can be
written as the difference between generated (PGi) and consumed (PLi) power at the i-th bus, as reported
by Equation (1). In (3), as expressed in [25], Vi and Vj are the i-th and j-th phasor bus voltages; δi and δj
are the phase angles of the i-th and j-th bus voltages. Although not shown here, the values of Vi and Vj,
δi and δj are the results of the optimized power flow process that is depending on the value of Kdi and
KGi at droop buses; Yij is the admittance of branch ij; θij is the argument of Yij; nbranch is the number of
branches connected to bus i.

The objective function of the OPF problem is thus to minimize the real power losses, Ploss of
the system:

OF(KG)
= Ploss =

nbus∑
i=1

Pi(KG)
(4)

where nbus is the number of buses in the system.
The following constraints, also including (1) and (2), must hold:

nG∑
i=1

PGi =
nd∑

i=1
PLi + Ploss

nG∑
i=1

QGi =
nd∑

i=1
QLi + Qloss

KGimin ≤ KGi ≤ KGimax
PGimin ≤ PGi ≤ PGimax, i = 2÷ nG
fmin ≤ f ≤ fmax

Vmin ≤ V ≤ Vmax

Ibranchj ≤ Imax branchj, j = 2÷ nbranch

(5)

where nG is the number of generators in the microgrid, nd is the number of load buses, and nbranch is
the number of transmission branches. Figure 1 shows the flowchart of the GSO algorithm.

Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), and Glow-worm Swarm
Optimization (GSO) are the three most popular swarm algorithms. In [28], it is proved that the GSO
has a high ability to look for globally optimal solutions and has a fast convergence rate, achieving
more stable and accurate results compared to other methods [25]. Thus, GSO is selected to solve the
optimization problem in this paper. This optimization method simulates the attraction exerted on
the fireflies by the brightness of the others to find multiple optimal solutions in a multimodal search
space [29].

3. Structure of the Online Driven Droop Regulation for Minimum Power Losses Operation

The online model is described by the mean of the Data acquisition, Communication and Human
Machine Interface (DC&HMI). The system parameters are monitored by using the data acquisition
system, then the HMI will transfer the digital values after processing through the internet. In this
way, the user can control the input parameters and supervise the system. This process is operating
continuously. The block diagram of the online operating system is shown in Figure 2.
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Figure 2. Block diagram of the online operating system.

The demand power of users and the maximum power capacity of generators is updated in every
decision time step for real-time execution. As presented in Section 2, at every time step, the OC
provides a new operating set point. At the beginning of each time slot, the measured power demand is
sent to the power calculation (PC) block while the OC verifies the power capacity of the generator. The
OC also aggregates other measurements gathered from the power system such as the actual loads, and
lines parameters. Then it executes the online OPF algorithm using the updated information.
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At every time slot, the PC block sends a power grid information request to the network that
returns relevant real-time grid measures, such as loads condition. After gathering this necessary
information, OC applies the optimization algorithm to find KGi for minimizing power losses of the
system in the current time slot. Then the results are sent to the inverters controllers to adjust their
power outputs. In this particular case, there is only one optimized generator, which is DGi. Figure 3
expresses the pseudocode of the online optimization process. The features of the computer used for
simulation are shown in Figure 4 below.
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Figure 4. Computer configuration for running the optimization controller (OC).

Note that the system is modeled in a sample of 24 h, but the time of scheduling is scaled down
from hours to minutes. It took between 15 and 30 s to complete the process of solving the optimization
problem. This period of time will be set as a time slot of the process.

4. Simulations and Results

4.1. Simulation in an Optimization Program

The proposed optimization program is tested for the different microgrid control systems to check
the effectiveness of the approach. Three test systems are considered in this application and the results
are illustrated in the Figures 5–7 below. The main regulating generator in all test systems is DG1.
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These three case studies demonstrate the ability of the proposed methodology to solve the power
losses minimization problem under different microgrid scales. It can be seen that the different microgrid
configuration produces different power losses improvement curves. As shown in Figures 5b, 6b and 7b,
the power losses of the corresponding test systems are improved about 14–18% while satisfying all the
frequency and voltage constraints. The detail of the results for a specific test system will be presented
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in Section 5. These results are positive signals for authors to believe that the offline optimization
program can work well on the online operating system.

4.2. Hardware in the Loop Simulation

To check how the control functions are sensitive to input data and parametric variations in reality,
such as line thermal limits, load changing, etc., this study presents a laboratory hardware in the
loop implementation of the test system described in Figure 8. To ensure results that best reflect the
effectiveness of the proposed method, the authors decided to choose the test microgrid that is taken
from Murty’s manuscripts [30]. The model of the test system includes one photovoltaic (PV) system
and two real batteries connected to a common load bus.Energies 2020, 13, x FOR PEER REVIEW 10 of 18 
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The experiments described in this section have been implemented at the National Institute of
Solar Energy (INES), Grenoble, France. This research infrastructure can provide a complete range
of rapid control prototyping (RCP) solutions to develop and test microgrid’s control and operation
quickly [31]. Along this section, the experimental installation, the operation of the test microgrid and
simulation results are presented.

The test scenarios are designed to analyze stability issues that may arise for this type of operation
and the real saving in the active power as compared to standard droop. At first, conventional droop
control is applied to both generators. Then, with the improved regulation method, some experiments
are implemented with the on-line changing values of KG2 obtained from the resolution of the OPF.

If the droop coefficients are too high, it can lead the system to instability. If the droop coefficients
are too low, it results in a low response of inverters [32]. Therefore, for testing the proposed method in
different conditions, KG1 is fixed while KG2 in this work is chosen optimally in the range (9–11.25) and
then in a wider range (6.75–11.25).

Therefore, three scenarios are implemented:

• Scenario 1: Test system is operated with the conventional droop control method;
• Scenario 2: Test system is operated with the proposed optimized droop control method to see

how the system operates when KG2 is selected optimally in the range (9–11.25);
• Scenario 3: Test system is operated with the proposed optimized control method to see how the

system operates when KG2 is selected optimally in a wider range (6.75–11.25).
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At first, a model of the system is implemented in the RT-lab simulator to check operating parameters,
then it is tested in hardware-in-the-loop simulation with the participation of a PV system to check the
stability of the system and the ability of the optimization program to respond to load variations.

At the software level, the online driven droop regulation has been implemented in OPAL-RT
simulator. The configuration of HIL system is expressed in Figure 9. In this work, OPAL-RT 5142
simulator is used. There is one host computer with a real-time (RT) software installation connected
to a RT simulator via a Transmission Control Protocol/Internet Protocol (TCP/IP). The optimization
program (OP) was developed in Matlab (R2010a) environment with a GSO algorithm to solve problem
running on another computer. This program is called by RT-lab supporting a Matlab development tool
for Scripts. The OP and the real-time platform communicate by User Datagram Protocol (UDP) over
Ethernet. The configuration of the HIL simulation is shown in Figure 9.
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The technical specifications of OP5142 RT-Lab are reported in Table 1.

Table 1. OPAL-RT’s technical specifications.

Digital I/O FPGA

Number of channels: 256 input/output configurable in 1-
to 32-bit groups
Compatibility: 3.3 V
Power-on state: High impedance

Device: Xilinx Spartan 3
I/O Package: fg676

Embedded RAM available: 216 Kbytes
Clock: 100 MHz

Platform options: XC3S5000
Logic slices: 33,280

Equivalent logic cells: 74,880
Available I/O lines: 489

Bus

Dimensions (not including connectors): PCI-Express x1
Data transfer: 2.5 Gbit/s

The test system includes the controllers and the model of the test MG. A PV system connected
to bus 3 is modeled as a power source in accordance with the energy profile derived from real data.
The power demand of customers at bus 3 is simulated as a set of 24-h peak loads in a day. The energy
profile of the PV system is shown in Figure 10. The energy profile of consumers at bus 3 is shown in
Figure 11.
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The electrical features of the lines in the test system are shown in Table 2:

Table 2. Electrical features of the test system.

From To R (Ohm/km) X (Ohm/km) L (km)

1 3 0.43 0.14444 1
2 3 0.43 0.14444 2.5

DG1 models a diesel generator and has a power supply capacity ranging from 0 to 35 kW, while
DG2 (Battery) has power supply capacity ranging from 0 to 45 kW. In this case, the slope KG2 of DG2 is
changed in a range to adjust the output power. The constraints for frequency are set to fmin = 49 Hz
and fmax = 51 Hz. The voltage can vary in the range from 360 V to 440 V. The frequency f0 of DG1 and
DG2 is set to the same value and equal to 50 Hz. In this case, generator DG1 was non-optimized while
generator 2 was optimized. KG1 is kept constantly at 8.75 while the range of variation of KG2 was set as
already said above.

5. Experimental Results and Analysis

To analyze and design a control system, it is important to assess the complete system response in
a given range of loading conditions. In this section, the test system described in the previous section
with the proposed droop regulation is set up and its behavior is assessed by comparing the results
achieved in optimized operation with those achieved with conventional droop control. The results will
show the system’s ability to respond immediately while parameters are changing so as to evaluate the
operating stability of the system within 24 h.
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5.1. The Simulation Results of the Transient Responses

Transient response is the reaction of the power system in a short period of time to a change from a
steady state. If the system is stable, the transient response will disappear smoothly. If the system is
unstable, the transient response will increase quickly in time, and some unexpected phenomena may
occur and harm the system. Therefore the transient responses need to be monitored carefully [33,34].

In every step load change, the droop coefficient KG2 is expected to change to produce a new
operating point for minimizing power losses in the microgrid. The simulation results of transient
response for a KG2 changing are expressed in Figure 12. Figure 13 shows the output power of generators
while frequency and bus voltages of the system are described specifically in Figures 14–16.Energies 2020, 13, x FOR PEER REVIEW 13 of 18 
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Figure 16. Phase voltages at DG2 bus.

It can be observed that when the droop coefficient is adjusted from −4.5 × 10−5 to −7.3 × 10−5 to
optimize the microgrid, the power sharing of generators is regulated. The output power from DG2 is
re-established and reduced from 1.88 × 104 to 1.46 × 104 W and the generated power of DG1 is changed
from 1.48 × 104 to 1.86 × 104 W. The frequency fluctuates in the range from 49.9 Hz to 50.16 Hz. This
changing only occurs in 0.5 s and within the frequency range of interest. The voltage of three phases at
DG1 and DG2 are also monitored and showed in Figure 13; Figure 14.

All the magnitudes of voltages are shifted slightly in the time interval from 35.3 s to 35.4 s. They
satisfy their limitations and are stable after changing KG2 to a new optimized value corresponding to
the new loading condition.

5.2. The Simulation Results in 24 H

The effectiveness of the proposed primary regulation is illustrated most distinctly in the 24-h
simulation. As expressed in Section 4, three scenarios have been implemented in islanded mode and
show the improvement by comparing the results with those attained in the conventional droop. The
results for the HIL tests are illustrated in Figure 17.

In scenario 1, with the conventional droop control, the droop coefficient KG2 is fixed at 11.25.
In scenario 2, KG2 is optimized in the range (9–11.25) and changed slightly around 9. In scenario 3,
because KG2 is chosen in a wider range (6.75–11.25), the adjustment of KG2 in different load conditions
is described clearly, especially in peak hours from 8 a.m. to 1 p.m. and from 6 p.m. to 9 p.m. In the
off-peak hours from 0 a.m. to 6 a.m., the power demand is not too large, the energy flow through the
transmission system is small. Thus the regulation and improvement are not obvious although KG2 is
chosen optimally. From the results in Figure 17, the DG2 output is adjusted to inject enough power to
the system in a way that minimizes power losses for the network. The power generated by DG1 is also
regulated to manage the differences between generation and consumption. It shows that the wider
adjustment range of KG2, the better improvement for power losses Ploss.
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System frequencies and voltages in the three scenarios fluctuate within the limitation. The
responses of frequency and voltages are smooth, as confirmed in Figure 17, from 49.9 Hz to 50.7 Hz for
frequency, from 394 V to 435 V for voltage, respectively.

Figure 18 shows the comparison results for the overall improvement of energy losses (Alosses) of
3 scenarios in 24 h.
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Figure 18 shows that the proposed regulation method gives smaller operating losses compared to
the conventional regulation method of about 16.15%. It is expected that larger systems and LV systems
may provide even larger absolute values of power loss reduction. From the proportion of power
sharing and the obtained values of frequency, it can be observed that the new regulation demonstrates
its powerful efficiency compared to the conventional droop method, the system operates in a more
effective way at every changing load step. In this case, the conventional hierarchical three-levels
architecture [35] could be largely simplified, since secondary and tertiary optimizations are carried out
online and with limited uncertainty.

Besides, it should be noted that since the effectiveness of the optimization method is based on
the redistribution of power flows in the system to achieve the best value of the objective functions.
Therefore, though not shown here, the location of the main regulating generator and the microgrid
topology play an important role in this problem. The structure of the microgrid is determined by not
only the power supply capacities of generators but also by the power transmission capacity and length
of the lines. These parameters have a great influence on the value of the objective function as well as
the optimal value of the variables.

It should also be noted that the solution to this problem could be impacted by different parameters
in Hardware in the loop system while applying regulation algorithms. However, this issue is beyond
the scope of this paper. For further improving the calculation accuracy, the sensitivity analysis of these
parameters should be considered in future works.

6. Conclusions

In this work, an adaptable online primary regulation is formulated and tested on an
experimental islanded microgrid in order to optimize operation for microgrid, specifically minimizing
power losses for the system. The proposed configuration is described in detail as well as the
communication infrastructure.

The validation of the proposed method is carried out through experiments using HIL. The method
has proved to bring benefits in terms of power losses reduction and to be suitable for laboratory
application while computation times are compatible with load changing within realistic test conditions.
Three scenarios are analyzed. The first scenario is implemented with the conventional droop control, a
classic scenario. The remaining two scenarios are implemented with one of the two generators (DG2)
optimizing its droop coefficient KG2 in different ranges. The operating characteristics are checked
in both transient response and steady-state operation. The results of scenarios have been compared
with each other to prove the effectiveness and show the advantages of the proposed configuration.
The power losses improvement is verified in the HIL simulations, which provides near reality testing
conditions and thus, ensures applicability and reproducibility of the results. 16.15% improvement of
energy losses is a good result to illustrate the effectiveness of the proposed method while all constraints
of problems are satisfied.

It is obvious that the improved driven primary control can be useful for reducing the power losses
in islanded microgrids and even can decrease implementation costs due to more limited needs of
power reserves for secondary and tertiary regulations. Further works will implement similar control
configurations in large systems in order to be tested to real operating conditions, also optimizing other
operating features such as fuel cost or other operating variable costs referred to power generation.
Further works will also consider the sensitivity analysis of the parameters in the HIL, and will improve
the operational features with the participation of storage units and the possible reconfiguration of
the microgrid.
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