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Executive Summary 
 
 
 
Despite many advantages, wide-spread integration of electric vehicles (EVs) in the power system is 
challenging. Large-scale uncontrolled EV charging load may lead to under-voltage violations, higher 
power losses, overloading of transformers and transmission lines. In this project, a machine learning-
based communication-free EV charge control strategy is developed to mitigate the issues caused by 
uncontrolled EV charging. Furthermore, fairness is ensured among the EVs available at different 
locations in the power distribution system. To do so, a nodal voltage and the voltage-to-load sensi-
tivity, are measured at each load node, which are fed to the EV charge controller. The output of the 
charge controller is the charging rate of an EV. In fact, an upstream node is generally less sensitive 
to changes in the load as it is closer to the feeding point. In order to validate the robustness of the 
proposed controller, light and heavy loading conditions are considered which mimics the daily, 
monthly, yearly, and seasonal load variations. Results prove that the proposed controller effectively 
improves the voltage profiles while ensuring fairness among the EVs connected at various charging 
points in the system. 
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2 Research Motivation 
 
Fossil fuel depletion and rising concerns on the global climate shift motivate both governments and 
the public to shift towards sustainability. Worldwide energy consumption trends are focusing on 
adopting environmentally friendly renewable resources [1]. Auto industries are also urged by fuel 
price volatility and gowning public interest in renewable fuel-powered transportation to invest in sus-
tainable fuel-based vehicles [2]. Consequently, for internal combustion engines (ICE) the shift from 
fossil fuels is addressed urgently through the introduction of electric vehicles (EVs). ICE-based cars 
are replaced by plug-in electric vehicles (PEVs) and Hybrid electric vehicles (HEVs). The European 
Commission had set an emission standard of 95g CO2 by 2020, and the US government set new 
fuel economy standards for 2025 that sets average fuel economy for passenger vehicles and light-
duty trucks to be 4.3L/100 km [3]–[5]. 

 
EVs provide numerous green services to the society through the reduction in greenhouse gas (GHG) 
emissions, reducing a state’s dependence on foreign oil imports, and grid support during peak hours 
of energy consumption [3]–[6]. These fast-paced set targets can only partially be achieved by making 
conventional vehicles energy efficient. Fully electrification of the transport sector is the key agent 
that will realize the emission targets.  The expected EV penetration rate for the United States is 62% 
by 2050 [7]. About 40% of the world's electric cars are is in China, as the fleet of electric cars on the 
rose above one million in 2017, while the US and EU accounted for a quarter of the total EV fleet. 
Interestingly, Norway has an EV stock of 6.4% which is by far the world’s highest. The EV market 
share in Norway has still the highest market penetration, and they have the world's largest plug-in 
segment market around 49.1% in 2018. The highest amount of EV charging stations is in Amsterdam 
[8]. 
 

While EVs offer greater benefits to the society they may pose significant operational problems to the 
distribution systems if their charging is uncontrolled [9]. Line congestions, low voltage sags, trans-
former overloads, and price volatility are more prominent for large-scale EV integrations in the dis-
tribution systems [10]. Improvising charge control strategies for EVs can mitigate the cons that suc-
ceed in the EV integration in the power grids. 
 
Distribution systems serve as the load centres and they may become the epicentre for cascading 
failures. Uncontrolled EV charging if remains in status-quo, increasing EV penetration in the future 
will overload the distribution systems. Although EVs offer several advantages over ICE, peak charg-
ing demands may rise considerably. Current EV market penetration is small so they have a minimal 
effect on the power systems. However, a surge in demand peaks will be visible when a significant 
rise in their market share is adopted soon. To address the uncontrolled charging of EVs and issues 
of under-voltages, higher losses, phase unbalance, and demand peaks, we propose an autonomous 
charge controller, that addresses the problems associated with the EV charging. 
 
2.1 Objectives 
 
This EVACC project presents a new Artificial Intelligence (AI)-based autonomous EV charge con-
troller. Online local measurement is performed for calculating sensitivity, i.e., changes in voltage to 
the changes in load at a node. And local voltage measurements along with sensitivity are the con-
troller inputs. Pre-system deployment the controller is trained with a machine learning (ML) approach 
using shallow deep multi-layer fully connected neural networks. This relieves the system of depend-
ing on the communication infrastructure and makes fairness easy to implement. The ML-inclusion 
adds robustness in the system regarding possible system changes in loading conditions and system 
re-configurations. 
Therefore, the specific contributions of this article are as follows: 

• An approach is proposed for estimating, in real-time, the sensitivity of point-of-charging 
(POC) voltage to load power changes using local measurements only in the real-time digital 
simulator (RTDS). 
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• A new ML-based communication-free EV charge control strategy is implemented that is de-
pendent on the local nodal voltage and sensitivity measurements. 

 
 
2.2 Scope 
 
EV charge control strategies are differentiated into centralized, decentralized, and autonomous con-
trol strategies. In the centralized charge controllers, the EV owners submit their charging requests 
to the central EV aggregator that determines optimum charging rates for the connected EVs. EVs 
are deployed for procuring ancillary services in [11]–[13] through their charging rates exploitation. 
 
Authors demonstrated in [14] that EV charging rates can be controlled through centralized control-
lers. Many works manifest that a centralized strategy can be harnessed for power distribution sys-
tems loss reduction, extending to transformer service life, fattening feeder profile and minimizing 
voltage excursions from nominal values [15]–[18]. However, the centralized EV charge controllers 
require substantial communication network topology for two-way communication. 
 
The decentralized EV charge controllers are embedded with smart charging control functionalities, 
i.e., upon receiving a charging input signal from the system operator it performs local optimization 
for determining the charging rate [19]–[26]. A smart controller may sometimes manage a group of 
EVs in a residential area of EV parking lots. Authors in [19] consider charging strategies for apart-
ments. The non-cooperative game approach is employed in [20],[21] for EV charge management. 
For ensuring valley filling EV charging schedules are determined [23]. In this method, the EV charg-
ing and power flow are decomposed and solved through a nested approach. However, each EV can 
solve its local charging rate optimization problem [24]. In order to manage EV charging rate for multi-
apartment/multi-customer EVs and satisfy secondary LV transformer loading constraints mixed-in-
teger linear programming has been derived [26]. 
 
Autonomous strategies do not rely on communication structure for curtailing EV load and setting 
charge schedules. However, fairness becomes challenging during application as it is a specific strat-
egy depends on how the controller ensures fairness among the wide varied nodes. Thus, this kind 
of controllers are more adaptive and self-sustaining in systems that do not incorporate enough net-
worked communication or computation tenacity. The EV charge controller takes the local measure-
ments at point-of-charging (POC) and decides on an optimal charging rate in an efficient manner. 
Many researchers develop and discuss disparate autonomous strategies [27]–[35].  A bi-directional 
frequency dependent EV charge controller is presented in [27], which utilizes EV for offering fre-
quency regulation service. However, this frequency responsive charger does not address voltage 
excursions around nominal ANSI standard voltage values, i.e., 1 ±5% p.u. Since all distribution sys-
tem nodes have the same system frequency, fairness regarding charging times among EVs is ade-
quately ensured. Peak demand hours are avoided by developing a rule-based charge controller that 
uses customer house load profiles for determining EV charge schedules [28]. The system’s condi-
tions are not considered by the rule-based charge controller. 
 
Some voltage-based charge controllers are also discussed in [29]–[32]. For example, a proportional 
EV charge controller’s output is proportional to POC voltage and reference voltage difference. In 
[29], it is demonstrated that proportional voltage-based charge controllers result in smooth load pro-
files, reduction in power losses, and improved voltages. However, they do not address the fairness 
among the EVs available at different nodes. In opposite to the frequency-based control methods, 
these voltage-based control techniques require special tuning for incorporating fairness since volt-
age is a local entity signal while frequency is a global signal. Another voltage-based controller is 
discussed in [30] that uses different reference voltages for fairness application. The downstream 
nodes have lower voltage references than the nodes at the upstream. Each POC reference voltage 
is derived from the average historical voltage profile. Fairness is ensured in addition to improved 
voltages. But, this type of controller becomes prone to reconfigurations in the system which are more 
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frequent in the routine power system’s operation. Authors in [31] implemented an EV charge con-
troller by considering all system nodes balanced for reducing simulation time, disregarding the true 
behavior of power distribution systems. Another voltage-based controller is presented in [32] that 
sets EV charging rates depending on local voltages and battery state-of-charge (SOC). This control-
ler is a non-linear controller which also satisfies EV owners’ choice of end of charge times (ECT) 
preference. The voltage-based non-linear charger addresses fairness among the EVs but by being 
very conservative as it restrains EVs from charging at full rate even when there is room for fast 
charging.  
 
Authors in [33], proposes a charging approach that relies on local node voltages and a predeter-
mined voltage sensitivity to the load variations at the POC to decide on the EV charging rate. How-
ever, due to possible system reconfigurations and demand variations, the predetermined voltage 
sensitivities will continuously change which may result in unfair charging. On the other hand, authors 
in [34] have introduced the concept of online sensitivity measurement which has been used along 
with the nodal voltage to determine the charging rates. Although this method is robust, however, the 
charging rates can be increased further since there is room available for fast charging. Additionally, 
since it’s an evolving business for the auto sector some researchers have considered applying arti-
ficial intelligence (AI) for optimizing EV loads and other residential demands [35],[36].  
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3 State-of-the-Art  
 
Recently, worldwide Artificial Intelligence (AI) and Machine learning (ML) are at the forefront of many 
leading applications. From self-driving to heavy industrial complexes, much of these utilize the uni-
versal nature of these innovative algorithms that easily regenerate complex patterns within the gi-
normous data that these applications generate. Since power systems generate a huge amount of 
data, they will define the emerging smart grid field in which data will drive most of the grid operations. 
From renewable distributed generation (DG) to 5G applications, every second a large data is gener-
ated which defines the system status and the succeeding decisions from grid operators or system 
optimization tools that keep the system in stable operation. Haphazard and opportunistic EV charg-
ing will become problematic for power systems as they do not consider distribution system status.  
 
In this research work, the ML approach is being used on the extensive data generated by the RTDS 
in the VTT MultiPower lab. Voltage and online sensitivity estimation in RTDS at the nodes of our test 
system serve as the learning parameters for the MLP network to decide on EV charging rates. Com-
ing up with optimum layers and learning algorithms is an important step in determining the same 
charging rate for all the EVs available at upstream and downstream nodes of the distribution system. 
As to keep customers satisfied and distribution system relieved of voltage mitigations fairness is 
necessary. The neural network (NN)-based learning approach achieves that through training on the 
generated dataset. 
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4 Executed Tests and Experiments 
 
The following tests are executed in our project “EVACC”: 
 

1) Online sensitivity estimation at the nodes in the system. Sensitivity estimated from an online 
method in RTDS coincides with sensitivities calculated from the direct diagonal entries in 
DIgSILENT PowerFactory 2019. 

2) Voltage profile for light loading and heavy loadings in the distribution system are obtained 
and used together with sensitivities in training NNs. 

3) A Multi-Layer perceptron network is used to derive the charging reduction factors for voltage 
violation elimination. 

4) Training and testing of the neural networks. 
 
4.1 Test Plan 
 
The main idea of the proposed EV charge control scheme, controller layout shown in Fig. 1, is to 
curtail EV charging rate at load nodes based on their local voltage and sensitivity at POC. This aims 
at mitigating voltage violations. It also helps suppress the system peak load during excessively high 
loading conditions and reduces power losses. The reduction will be time-varying since the load var-
iation at nodes results in voltage variation. At each instant of time, a new set point for the EV charge 
controller must be determined based on the network condition. Ensuring fairness without communi-
cation is a key idea in its implementation at the distribution level. Individual nodal voltages are differ-
ent at upstream and downstream nodes. The downstream node voltages are more prone to under-
voltage violations, while upstream nodes have improved voltage profiles. If the charge controller 
decides on the amount of EV demand reduction based on the nodal voltage at POC only, fairness 
will not be ensured. In fact, the loads connected to the downstream nodes will undesirably contribute 
more as compared to those connected upstream. To ensure fairness, the voltage sensitivity due to 
load variations is also incorporated. Note that POCs with higher voltage magnitudes tend to have 
lowered sensitivities than POCs with lower voltages. Hence, the charging factor, for each node, is a 
function of the node voltage and sensitivity.  
 
To identify the EV charge controller structure, a neural network training-inspired approach is used. 
In the Multi-Layer Perceptron (MLP) neural networks, a back-propagation algorithm is employed 
using the Least mean squared (LMS) method. The procedure is repeated for multiple loading condi-
tions. Different loading conditions will result in different voltage profiles. Based on the power flow 
results of each condition, the percent charging variation that needs to be applied at each node is 
determined so that acceptable voltage profiles are obtained. To enforce fair contribution from all the 
EVs, the same EV charging rate must be applied to all loads at any given set of system conditions. 
A fully connected MLP neural network is trained with the data, to obtain the weights at the input, 
output, and the biases. In this neural network approach, the inputs are the nodal voltages and their 
corresponding voltage-to-load sensitivities, and the desired output is the percent charge reduction. 
In this work, the sigmoid activation function given in (1) is employed in each neuron in all the layers 
of the network except at the output node which is linear as given by (2). Fig. 2 illustrates the MLP 
NN used for training. NNs are non-linear statistical models that are used to represent or envelop the 
complex behaviour of natural or engineered processes. They are a fully connected group of nodes 
and layers. We are employing them to train for EV charging factors determination using online sen-
sitivity and voltage measurements. NN includes input nodes, output nodes, and several hidden lay-
ers. 

 𝜑(v) = tanh(𝑉) (1) 
where 

 V = ∑ (𝑊𝑖 × 𝑣𝑖  +  𝑊𝑠 × 𝛿𝑖 + 𝑏𝑖)
𝑚

𝑖=0
 (2) 

 
𝑊𝑖 is the input weight vector for the Voltages and 𝑊𝑠 is the input weight vector for sensitivities, and 



ERIGrid GA No: 654113 26.3.2020 

TA User Project: EVACC Revision / Status: draft 12 of 29 

b is input bias. 

 

Figure 1: Overview of EV charge control structure. 

 

Figure 2: Fully connected multi-layer neural network. 

 
4.2 Standards, Procedures, and Methodology 
 
Standards 

American National Standards Institute (ANSI) standards [37] are followed for keeping the voltage 
profile in the recommended allowable range. As per ANSI standards, the residential low voltage (LV) 
must be maintained within ± 5% of the nominal voltage.  
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Procedures 

A residential test system is used for carrying out the simulation in DIgSILENT PowerFactory 2019, 
a power systems simulation software. There are seven nodes in the distribution system among them 
six are load nodes. Voltage and sensitivity factors are calculated for the system nodes online in the 
RSCAD simulation platform of the RTDS. Voltage-to-load sensitivity 𝛿𝑖 at 𝑖𝑡ℎ node is calculated using 
(3). The voltage and sensitivity measured data is used for neural network training.  

 𝛿𝑖(𝑡) =
𝑣𝑖(𝑡 + ∆𝑡) − 𝑣𝑖(𝑡)

𝑝𝑖(𝑡 + ∆𝑡) − 𝑝𝑖(𝑡)
 (3) 

Methodology 

The voltage and sensitivity vectors are utilized as input nodes for the NN training. The EV charging 
set points during various system conditions, i.e., during light and heavy loadings are determined by 
running simulations and analysing system conditions. Data analytics play its role here as the correct 
curtailment factors will effectively relieve the system voltage stresses, line and transformer overload-
ing, and fairness issue in the system. Through various hit and trial sessions, final reductions factors 
are settled upon which are later used as the required output of the NNs. Training is performed using 
various ML approaches. By treating the charging as a classification problem and setting various 
classes for the different charging rates. And then training with Linear classification methods. 
 
4.3 Test Set-up 
 
The proposed EV charge controller is implemented on an EV-rich test distribution system, shown in 
Fig. 3. There are six load nodes where Node-2 is an upstream node and a Node-5 is a downstream 
node. The secondary distribution system operates at 220 V line-to-line voltage and the network pa-
rameters are provided in Table 1. It is considered that there are four houses at each load node, and 
three of them are assumed to own EVs, i.e. 75% EV penetration. Most of the EVs are considered as 
Nissan Leaf while few EVs are assumed to be Tesla to make the analysis more realistic. The data 
for Nissan Leaf and Tesla are provided in Tables 2 and 3, respectively. The load profiles at all the 
load nodes are shown in Fig. 4. 
 

 

Figure 3: EV-rich test distribution system. 
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Table 1: Secondary Distribution System Parameters 

Parameter Value 

Secondary conductor 350 Al, 4/0 

No. of customers 4 

EV penetration 75% 

System frequency 60 Hz 

Table 2: Specifications of Nissan Leaf [38] 

Parameter Value 

Battery capacity 40 kWh 

Maximum charging rate 6.6 kW 

Initial battery SOC 30% 

Maximum mileage 126 mi 

Table 3: Specifications of Tesla Model S [39] 

Parameter Value 

Battery capacity 75 kWh 

Maximum charging rate 11.5 kW 

Initial battery SOC 30% 

Maximum mileage 348 mi 

 

Figure 4: Non-EV load profile at (a) Node-2 (b) Node-3 (c) Node-4 (d) Node-5 (e) Node-6 (f) Node-7. 
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5 Results and Conclusions 
 
The test system described in the previous section is used to assess and validate the proposed EV 
charge controller. In order to incorporate daily, monthly, and yearly load variations, different loading 
conditions are considered. Also, the performance of many EV charge controllers such as opportun-
istic, proportional, nonlinear, and voltage-and-sensitivity-based chargers are compared with the pro-
posed EV charge controller. Note that two extreme nodes, i.e. Node-2 (upstream) and Node-5 
(downstream), are selected since they can provide sufficient performance details. 
 
5.1 Base Case (i.e., without EVs) 
 
First of all, the system behaviour is studied when no EV is connected to the power distribution sys-
tem. The voltage profiles for Node-2 and Node-5 for light and heavy loadings are shown in Figs. 5a 
and 5b, respectively. It can be seen that the voltage at Node-5 is always lower when compared to 
Node-2 since it is a downstream node.  

 

Figure 5: Base case voltages at Node-2 and Node-5 during (a) light loading (b) heavy loading. 

 
5.2 Opportunistic Charging 
 
In an opportunistic charging strategy, EVs are charged at the maximum charging when connected 
to the system [32]. When all the EVs are being charged at a very high rate, the total load in the 
system increases significantly which may result in voltage violations and the line overloads. The 
charging time for Nissan Leaf and Tesla are provided in Table 4. The voltage profiles for Node-2 and 
Node-5 are illustrated in Figs. 6a and 6b for light and heavy loadings, respectively. It can be seen 
that the severe under-voltages occur at the downstream node during heavy loading. According to 
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the ANSI C.84-2016 standard, the voltage must be within the range of 0.95 p.u. – 1.05 p.u. To miti-
gate under-voltage issues, the system load must be reduced, which means EVs should be charged 
at a slower rate especially during the events when the non-EV load is already high.    

 

Figure 6: Opportunistic charging voltages at Node-2 and Node-5 during (a) light loading (b) heavy loading. 

 
Table 4: Minimum and maximum charging times for opportunistic charging 

EV Type 
Minimum charging time Maximum charging time 

Light loading Heavy loading Light loading Heavy loading 

Nissan Leaf 4.2417 hrs. 4.2417 hrs. 4.2417 hrs. 4.2417 hrs. 

Tesla Model S 4.5639 hrs. 4.5639 hrs. 4.5639 hrs. 4.5639 hrs. 

 
 

5.3 Proportional Voltage-Based Charging 
 
As mentioned earlier that the system load must be reduced when the system voltage drops. There-
fore, in proportional voltage-based charging, EVs are charged in proportion to the nodal voltages 
which assist in improving the voltage profiles. The relationship given in (4) is used to calculate the 
charging rate (𝑃𝑘,𝑗) for 𝑘𝑡ℎ EV of type 𝑗. The proportional controller gain 𝑘 is set to 25 while 𝑣𝑟 is 

considered 0.955 p.u. 

 𝑃𝑘,𝑗(𝑡) = {
𝑘. (𝑣𝑖(𝑡) − 𝑣𝑟). 𝑃�̅�, 𝑣𝑖 ≥ 𝑣𝑟

0          ,         𝑣𝑖 < 𝑣𝑟
 (4) 

where 𝑣𝑖 is the nodal voltage of 𝑖𝑡ℎ node, 𝑣𝑟 is the reference voltage, 𝑘 is the proportional controller 

gain, and 𝑷𝒋
̅̅ ̅ is the maximum charging rate of an EV of 𝑗𝑡ℎ type.   

The voltage profiles at Node-2 and Node-5 are provided in Fig. 7. Note that the voltages are signifi-
cantly improved as compared to opportunistic charging case however, the charging rates are unfairly 
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determined. EVs connected at upstream nodes are being charged faster since they are receiving 
good voltage profiles. In contrast, EVs available at downstream nodes are being charged at much 
lower rates, which tend them to take a very long time to get fully charged. The minimum and maxi-
mum charging times are tabulated in Table 5. It is evident that there is a large difference between 
the charging times of EVs available at different locations in the system. Some of the EVs are not 
even charged fully within the designated time. Hence, there is a need for an EV charge controller 
that can alleviate voltage violations, and ensure the fairness among the EVs available at various 
charging points in the power distribution system. 

 

Figure 7: Proportional charging voltages at Node-2 and Node-5 during (a) light loading (b) heavy loading. 

 

Table 5: Minimum and maximum charging times for proportional charging 

EV Type 
Minimum charging time Maximum charging time 

Light loading Heavy loading Light loading Heavy loading 

Nissan Leaf 5.0778 hrs. 5.3722 hrs. - - 

Tesla Model S 5.5472 hrs. 5.8528 hrs. 9.6056 hrs. - 

 
5.4 Voltage-Based Nonlinear Charging 
 
A voltage-based nonlinear charge controller is presented in [32] that minimizes the voltage violations. 
Moreover, it ensures that all the EVs take almost the same time to be fully charged. The voltage 
profiles of Node-2 and Node-5 are shown in Figs. 8a and 8b for light and heavy loadings, respec-
tively. The minimum and the maximum charging rates for both types of EVs are provided in Table 6. 
It can be observed that this controller improves the voltage profiles remarkably as compared to op-
portunistic charging (see Figs. 6 and 8) however, the conservative behaviour needs to be improved 
as it slows down the charging rate even when there is room for increasing the charging rate without 
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impacting the system voltages, especially during light loading (see Tables 4 and 6). 
 

 

Figure 8: Nonlinear charging voltages at Node-2 and Node-5 during (a) light loading (b) heavy loading. 

 
Table 6: Minimum and maximum charging times for voltage-based nonlinear charging 

EV Type 
Minimum charging time Maximum charging time 

Light loading Heavy loading Light loading Heavy loading 

Nissan Leaf 5.9389 hrs. 5.9556 hrs. 6.0417 hrs. 6.2972 hrs. 

Tesla Model S 6.3917 hrs. 6.4083 hrs. 6.4972 hrs. 6.7528 hrs. 

 
5.5 Voltage-and-Sensitivity-Based Charging 
 
In [34], a concept of voltage sensitivity is introduced to further enhance the fairness among the EVs 
available at different locations in the system. The upstream (or stronger) nodes are less sensitive to 
load changes when compared to the downstream (or weak) nodes as shown in Fig. 9. In other words, 
the same change in the load will have a higher voltage impact on the downstream node than on the 
upstream node. In fact, the node having a higher voltage is less sensitive to load variations or vice 
versa. Using this fact, this controller makes better use of system capacity by increasing the charging 
rates of EVs, whenever possible, without negatively impacting the voltage profiles. The voltage pro-
files at Node-2 and Node-5 during light and heavy loadings are shown in Figs. 10a and 10b, respec-
tively. It can be seen that voltage profiles are slightly lower than that of the voltage-based nonlinear 
charging scheme (see Figs. 8 and 10). The minimum and the maximum charging times for EVs 
during the light and heavy loadings are tabulated in Table 7. This controller charges the EVs faster 
as compared to the voltage-based nonlinear charge controller. It can be seen that the EVs are not 
only charged faster but the time difference between the earliest and the latest EVs is also reduced 
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(see Tables 6 and 7). Despite the fact that the EVs are charged faster with the voltage-and-sensitiv-
ity-based charger, there is still room available for further improvements. 

 
Figure 9: Voltage-sensitivity at Node-2 and Node-5 during light and heavy loading conditions. 
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Figure 10: Voltage-and-sensitivity-based charging voltages at Node-2 and Node-5 during (a) light loading (b) 
heavy loading. 

Table 7: Minimum and maximum charging times for voltage-and-sensitivity-based charging 

EV Type 
Minimum charging time Maximum charging time 

Light loading Heavy loading Light loading Heavy loading 

Nissan Leaf 5.5500 hrs. 5.5611 hrs. 5.5778 hrs. 6.0889 hrs. 

Tesla Model S 5.9861 hrs. 5.9917 hrs. 6.0028 hrs. 6.4833 hrs. 

 
5.6 Proposed Charging 
 
As stated earlier, opportunistic, proportional voltage-based, voltage-based nonlinear, and voltage-
and-sensitivity-based controllers have some sort of limitations, such as power quality issues and/or 
unfair charging patterns. The artificial intelligence based proposed controller solves these issues. 
After obtaining all the measurement data, the controller is trained using NN shown in Fig. 11 with the 
data. The training performance is shown in Fig. 12. Several retraining, layers variation, and a number 
of neurons are performed as a hit and trial method since there is no single criterion regarding the 
best number of layers or the number of neurons in each layer. The testing performance is shown in 
Fig. 13, where the testing outputs from the trained network and target outputs from the analysis of 
the distribution system are plotted. 
 

 

Figure 11: Layout showing number of neurons and layers in the  NN. 
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Figure 12: Performance of the trained NN. 

 

Figure 13: Testing the performance of the trained multi-layer network. 
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The voltage profiles of Node-2 and Node-5 for light and heavy loadings are shown in Figs. 14a and 
14b, respectively. It can be seen that the voltage is always well above the minimum allowable voltage 
limit as defined by the ANSI C.84-2016 standard. The minimum and the maximum charging times 
for the proposed controller are provided in Table 8. It can be noticed that all the EVs are charged 
much faster as compared to other techniques. For example, the minimum charging times for Nissan 
Leaf during light and heavy loadings have been considerably reduced to 4.2639 and 4.3139 hours, 
respectively. In contrast, the minimum charging times are 5.5500 and 5.5611 hours, and 5.9389 and 
5.9556 hours during light and heavy loading conditions for voltage-and-sensitivity-based and volt-
age-based nonlinear charge controllers, respectively (see Tables 6 and 7). Similarly, the maximum 
charging times with the proposed controller have been significantly reduced to 4.8889 and 5.5667 
hours for Nissan Leaf during light and heavy loading conditions, respectively. Similarly, there is a 
remarkable reduction in the charging time of Tesla during both the light and heavy loadings (see 
Table 5). 

 
Figure 14: Proposed charging voltages at Node-2 and Node-5 during (a) light loading (b) heavy loading. 

 

Table 8: Minimum and maximum charging times for proposed charging 

EV Type 
Minimum charging time Maximum charging time 

Light loading Heavy loading Light loading Heavy loading 

Nissan Leaf 4.2639 hrs. 4.3139 hrs. 4.8889 hrs. 5.5667 hrs. 

Tesla Model S 4.6306 hrs. 4.6944 hrs. 5.1639 hrs. 5.7778 hrs. 

 
Another noteworthy aspect of the proposed controller is fair charging among the EVs available at 
different locations in the system. To prove the effectiveness of the proposed charge controller, EVs 
which are plugged-in almost at the same time, irrespective of their locations in the system, are com-
pared. In Figs. 15-19, various EVs are compared during light and heavy loading conditions when 
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different charge controllers are utilized. It can be observed that EVs are not only charged faster but 
they are charged fairly. The average charging time of Nissan Leaf and Tesla for various charge 
control strategies during the light and heavy loading conditions are shown in Fig. 20. It can be noticed 
that EVs are charged quickly during the light loading when the proposed controller is utilized as the 
system can accommodate higher charging rates which proves the efficacy of the proposed controller.  

 

Figure 15: Comparison of Nissan Leafs available at Node-2 and Node-4 with different controllers during (a) 
light loading (b) heavy loading.   

  

 

Figure 16: Comparison of Nissan Leafs available at Node-2 and Node-5 with different controllers during (a) 
light loading (b) heavy loading. 
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Figure 17: Comparison of Nissan Leafs available at Node-3 and Node-7 with different controllers during (a) 
light loading (b) heavy loading. 

 

 

Figure 18: Comparison of Nissan Leafs available at Node-6 and Node-7 with different controllers during a) 
light loading (b) heavy loading. 

 



ERIGrid GA No: 654113 26.3.2020 

TA User Project: EVACC Revision / Status: draft 25 of 29 

 

Figure 19: Comparison of Tesla available at Node-2 and Node-2 with different controllers during (a) light 
loading (b) heavy loading. 

 

Figure 20: Comparison of the average charging time with different controllers for (a) Nissan Leaf (b) Tesla. 
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Open Issues and Suggestions for Improvements 
 
Electric vehicles (EVs) are becoming ubiquitous all over the world especially in European countries. 
The large-scale adoption of EVs may pose many challenges such as line congestion, transformer 
overloading, under-voltages, and increased power losses. These issues can be mitigated if the 
charging rate of EVs is controlled. EV charging strategies are classified as centralized, decentralized, 
and autonomous schemes. In a centralized charging strategy, a well-established communication 
infrastructure must be available in the power system. Many countries still lack an extensive commu-
nication network which makes centralized strategies less practical. A decentralized charging strategy 
requires reduced communication infrastructure which seldom exists in most of the countries.  
 
On the other hand, an autonomous charging strategy does not require any kind of communication 
infrastructure as it depends only on the local measurements such as voltage, voltage-to-load sensi-
tivity, and frequency. The major challenge associated with the communication-free charging strate-
gies is to ensure fairness among the EVs available at various charging points throughout the distri-
bution system since there is no way of communication among them. Another major challenge is 
hunting, which is a state of turning on and off an EV when the voltage goes above and below a 
certain threshold. 
 
The issue of fairness can be mitigated by implementing an artificial intelligence based EV charge 
controller. However, extensive data are required to train and implement a robust charge controller. 
Moreover, it needs to be continuously updated as the system may undergo expansion plans and 
continuous modifications such as system reconfiguration and renewables integration. It is also sug-
gested that if the charge controller is based on the classification methods, the difference between 
the various classes must not be too big as it may result in sharp voltage spikes which are highly 
unacceptable. Moreover, the variations among the class must be smooth. Similarly, the problem of 
hunting can be avoided if EVs’ charging rates are varied in smaller steps. Furthermore, if the EV is 
turned off because of under-voltage, it must not be turned on unless the voltage improves signifi-
cantly. 
 
6 Dissemination Planning 
 
The plan is to publish one conference and one journal article from this work. The journal article will 
be submitted to one of the following well-reputed peer-reviewed journals: 

1. IEEE Transactions on Industrial Informatics 
2. Applied Energy 
3. IEEE Access 
 
It is also planned to submit a part of this work to one of the following conferences: 

1. 10th IEEE PES Innovative Smart Grid Technologies (ISGT) Conference-Asia 
2. 12th IEEE PES Innovative Smart Grid Technologies (ISGT) Conference-North America 
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