

Engineering

School of

IEFE Institute of Energy Systems and Fluid-Engineering

Stability of Photovoltaic Inverters Reactive Power Control by the distribution GRID voltage

Nürnberg, Germany 18th July 2018, www.isenec.org

Franz Baumgartner¹,
Fabian Carigiet¹, Christian Messner², Ch. Seitl², Thomas Strasser², Roland Bründlinger²
¹⁾ Zurich University of Applied Sciences, SoE IEFE, Winterthur, http://www.zhaw.ch/=bauf
²⁾ AIT Austrian Institute of Technology, SmartEST Laboratory, Vienna; www.ait.at

Zurich University of Applied Sciences;, Franz Baumgarrtner et. al. http://www.zhaw.ch/=bauf

Billions Investments in DG needed?

School of Engineering IEFE Institute of and Fluid-Engine

Zurick University of Applied Sciences

IEFE Institute of Energy Systems and Fluid-Engineering

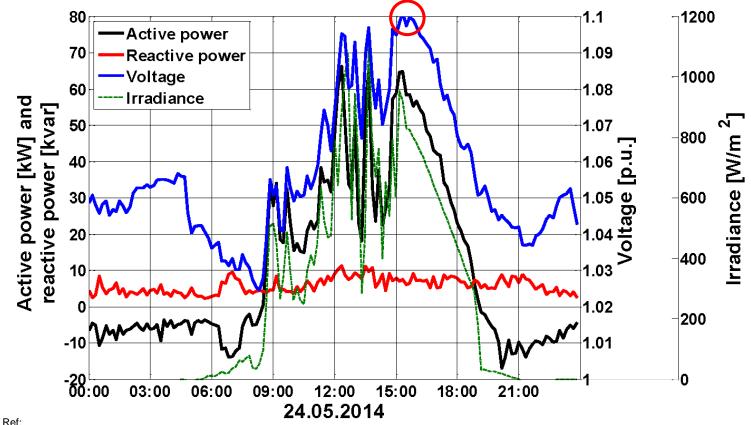
M. Braun, T. Stetz, R. Bründlinger et al. Prog. Photovolt: Res. Appl. (2011) - Research Gate PAPER PRESENTED AT 26TH EU PVSEC, HAMBURG, GERMANY 2011

A recent study [32, E-bridge Consult 2011] on the distribution grid extension costs in Germany due to PV and wind integration (scenario 2020: 52-GW PV) and 36-GW wind) presents figures in the range of 21–27 billion Euros. This is caused by 240 000-km lines at LV substation and 140 000-km lines at MV substation as well as 33GVA at LV/MV substations and 30GVA at MV/HV substations. These are calculations based on conventional grid planning procedures. As presented in the German case study, smart PV inverter functionalities using active and reactive power control enable reducing grid reinforcement costs significantly. As the present PV market share leader, Germany already has invested billions of Euros in distribution grid extensions and reinforcements due to PV installations. Grid codes are being developed to allow active and reactive power control that can reduce these costs significantly. However, more than 17-GW PV are already installed. More than 90% do not have any of these power control capabilities.

Stability of Photovoltaic Inverters Reactive Power Control by the distribution GRID voltage

Status 2018 : 45GW PV

Voltage Rise due to Decentralised Generation



Zurick University of Applied Sciences

> IEFE Institute of Energy Systems and Fluid-Engineering

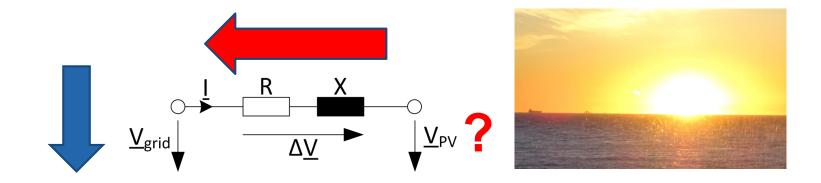
School of Engineering

Measurement results: voltage for 10min larger than 110% nominal voltage

F. Carigiet, M. Niedrist, C. Scheuermann, and F. Baumgartner, 'Case study of a low-voltage distribution grid with high PV penetration in Germany and simulation analyses of cost-effective measures', Prog. Photovolt. Res. Appl., 2015.

Voltage Dependant Active and Reactive Power Control – PQ(V)

of Applied Sciences

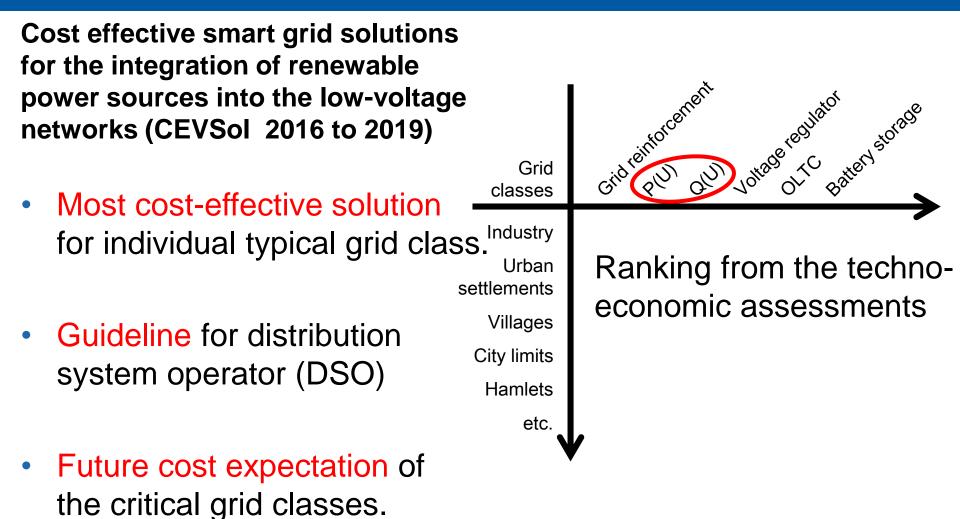

Zurick Universit

Engineering IEFE Institute of Energy Systems and Fluid-Engineering

Regulations regarding Voltage Rise at PCC:

- EN 50160: ΔV ≤ 10%
- D-A-CH-CZ Technical Rules: $\Delta V \leq 3\%$

Reduction of ΔV by control of P or Q

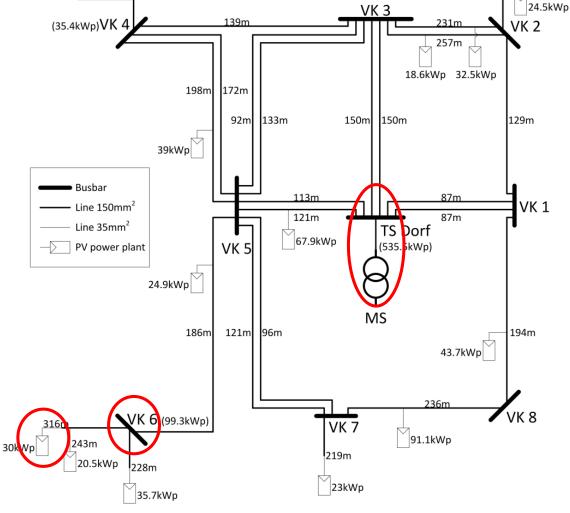


Project goals

of Applied Sciences School of Engineering

Zurick University

Zurich University of Applied Sciences;, Franz Baumgarrtner et. al. http://www.zhaw.ch/=bauf


Description of LVDG used for verification

Stability of Photovoltaic Inverters Reactive Power Control by the distribution GRID voltage

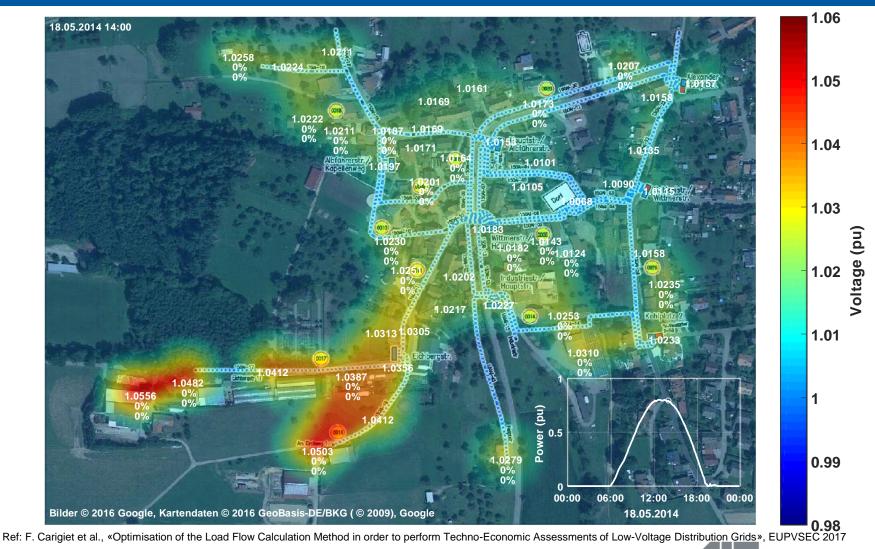
400 kVA transfomer

- 33 PV power plants
- 535.5 kWp installed PV power
- 218 nodes
- 228 lines

18.07.2018

School of

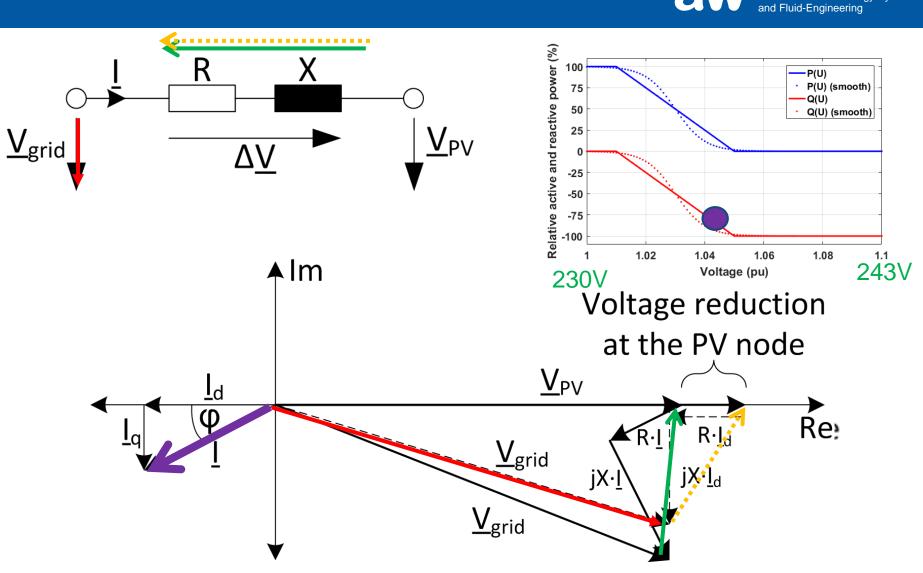
IEFE Institute of Energy Systems and Fluid-Engineering


.81m

Effect of Decentralised Generation without PQ(V) Control

IEFE Institute of Energy Systems and Fluid-Engineering

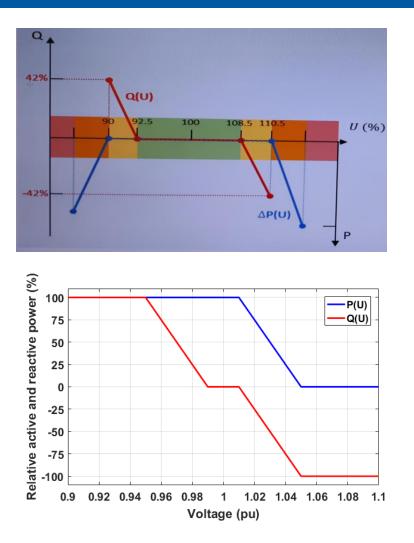
School of Engineering


18.07.2018 Stability of Photovoltaic Inverters Reactive Power Control by the distribution GRID voltage

USTRIAN INSTITUTE

Reduction of the voltage at PV inverter

Zurick University of Applied Sciences


> School of Engineering IEFE Institute of Energy Systems

18.07.2018 Stability of Photovoltaic Inverters Reactive Power Control by the distribution GRID voltage

PQ(V) Control Strategies of PV Inverters

- Different ramps possible
- P(V) / Q(V) separate or combined
- Under excited mode to reduce voltage (e.g. high PV feed-in), overexcited mode to increase voltage (e.g. high EV charging)

Zurick University of Applied Sciences

School of

Engineering

and Fluid-Engineering

IEFE Institute of Energy Systems

Utilities Q(V) codes of PV inverter

Zurick University of Applied Sciences

IEFE Institute of Energy Systems and Fluid-Engineering

- +30% bis 100% mehr PV vgl. cosφ=1 (Elbs, VKW)
- ¼ weniger Leitungsverluste (Elbs, VKW)
- 80% weniger Blindleistung vgl. mit Q(P)
- keine zusätzlichen IT Kosten !!

120% 100% übererregt, kapazitiv 80% 60% 40% 00 0% 0% Spannung rel. S. -20% -40% -60% -80% untererregt, induktiv -100% -120% Seite 21 illwerke vkw 32. Symposium Photovoltaische Solarenergie

Elbs; 32. PV Tagung Deutschland, Staffelstein 2017

BKW

Q(U) Pilot 2015 im Niederspannungsnetz


Schulhaus Stadelfeld Wichtrach

http://easyluefter.ch/solar/stadelfeld2/documents/

<u>Mittelspannung Empfehlung Anschlussbedingungen</u> VSE/AES / NA EEA – CH 2014, Dezember

vgl. z.B. BKW 2017

https://www.bkw.ch/fileadmin/user_upload/11_Netzdienstleistungen/Netzdienstleistungen/Netzanschluss/201407 01_TAB_MS_1.4_TAXEF.pdf

SIG Genf - Prof. Allenbach HES, electro suisse buelletin 1

Stability dittp://bullatinc.dh/de/nevis-detail/zuwposte-mt/bbt/intelligent.html/3/il/Befiles/content/nev/earticles/B Artikel/1702/B 1702 Allenbach/B 1702 Allenbach.pdf

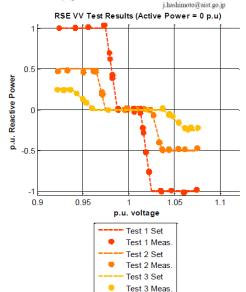
IEA ISGAN Paper

Table I: Review of Grid Codes for the Volt / VAR function								
Country/ Grid Code	Data Requirements	Specified Curve	Default Values					
US (California)/ UL 1741 SA: 2015	AC and DC current and voltage. The minimum measurement accuracy shall be 1% or less of rated EUT nominal output voltage and 1% or less of rated EUT output current.	 Q₁ = maximum capacitive reactive power setting Q₂ = reactive power setting at the left edge of the deadband Q₃ = reactive power setting at the right edge of the deadband Q₄ = maximum inductive reactive power setting V₁ = voltage at Q₁ V₂ = voltage at Q₂ V₃ = voltage at Q₃ V₄ = voltage at Q₄ 	$V_1 = V_2 - Q_1/KVAR_{max}, Q_1 = Q_{max,cap}$ $V_2 = V_n - Deadband_{min}/2, Q_2 = 0$ $V_3 = V_n + Deadband_{min}/2, Q_3 = 0$ $V_4 = Q_4/KVAR_{max} + V_3, Q_4 = Q_{max,ind}$					
Germany/ FGW - TR3 Rev23 (optional test)	Displacement factor, P, Q, and V useing a 0.2s (min) sliding average. The settling time shall be determined on the basis of ±5% rated active power.	Aditional tests are carried out for PGUs with reactive power control with Q(U) caricteristic curve. The voltage steps start at the lowest voltage to the highest voltage and vice vcersa.	none					
Austria ÖVE/ÖNORM EN50438 (optional - in accordance with DSO, e.g. function used by local DSO - -Vorarlberg Netz)	Displacement factor, P, Q, and V using a 0.2s (min) sliding average. The settling time shall be determined on the basis of ±5% rated active power.	$ \begin{array}{l} V_{1i} = \mbox{ under voltage at the left edge of the deadband } \\ V_{2i} = \mbox{ under voltage at max capacitive reactive power } \\ V_{1s} = \mbox{ over voltage at the right edge of the deadband } \\ V_{2s} = \mbox{ over voltage at max inductive reactive power } \\ Q_{1i} = \mbox{ reactive power at } \\ V_{1i} \\ Q_{2i} = \mbox{ reactive power at } \\ V_{1s} \\ Q_{2s} = \mbox{ reactive power at } \\ V_{1s} \\ Q_{2s} = \mbox{ reactive power at } \\ V_{2s} \\ Q_{max,cap} \mbox{ and } \\ Q_{max,ind} \mbox{ from capability curve} \end{array} $	For grid operator (Vorarlberg Netz) $V_{1i} = 1.02 V_n, Q_{1i} = 0$ $V_{2i} = 0.99 V_n, Q_{2i} = Q_{max,cap}$ $V_{1s} = 1.05 V_n, Q_{1s} = 0$ $V_{2s} = 1.08 V_n, Q_{2s} = Q_{max,ind}$					
International / IEC 61850- 90-7 VV11 18.07.2018	Monitor and record electrical output of EUT. • Voltage • Active power	 Pointwise definition with (V₁, Q₁) through (V_x, Q_x) points. Q_x = Desired reactive power setting at V_x V_x = Voltage setting at Q_x. 	No default. Example settings are: $V_1 = 0.97 V_n, Q_1 = 50\%$ $Q_{max,overexcited}$ $V_2 = 0.99 V_2, Q_2 = 0$					

Zurick University of Applied Sciences

IEFE Institute of Energy Systems and Fluid-Engineering

INTERNATIONAL DEVELOPMENT OF ENERGY STORAGE INTEROPERABILITY TEST PROTOCOLS FOR PHOTOVOLTAIC INTEGRATION d Deseuter, Jay Johnson, Maurizia Varga, Disporte Lazari, Christi


David Rosewater, Jay Johnson, Maurizio Verga, Riccardo Lazzari, Christian Messner, Roland Bründlinger, Kathan Johannes, Jun Hashimoto, Kenji Otani

> David Rosewater¹, Jay Johnson^{1*}, Maurizio Verga², Riccardo Lazzari² Christian Messner³, Roland Bründlinger³, Kathan Johannes³, Jun Hashimoto⁴, Kenji Otani⁴ * Corresponding Author ²Ricerca sul Sistema Energetico-RSE S.P.A. ¹Sandia National Laboratories Via R. Rubatino 54

P.O. Box 5800 MS1033 Albuquerque, NM 87185-1033 USA Phone: +1 505-284-9586 Fax: +1 505-844-3952 jjohns2@sandia.gov

³Austrian Institute of Technology Donau-City-Strasse 1 1220 Wien, Austria Phone: +43 50550 6351 Fax: +43 50550 6390 Roland.Bruendlinger@ait.ac.at Via R. Rubatino 54 20134 Milano, Italy Phone: +39 02-3992-4765 Fax: +39 02-3992-5626 Maurizio.Verga@rse-web.it

⁴Fukushima Renewable Energy Institute, AIST (FREA) Machiikedai, 2-2-9, Koriyama, Fukushima, 963-0298, Japan Phone: +81-24-963-0827 Fax: +81-24-963-0824

http://www.zhaw.ch/=bauf Slide 11 cases with

Figure 12: RSE test results for VV function (three test cases with no active power)

Zurich University of Applied Sciences;, Franz Baumgarrtner et. al. http://www.zhaw.ch/=bauf

Q(V) - PV inverter on the market

School of Engineering IEFE Institute and Fluid-Eng

Zurick University of Applied Sciences

IEFE Institute of Energy Systems and Fluid-Engineering

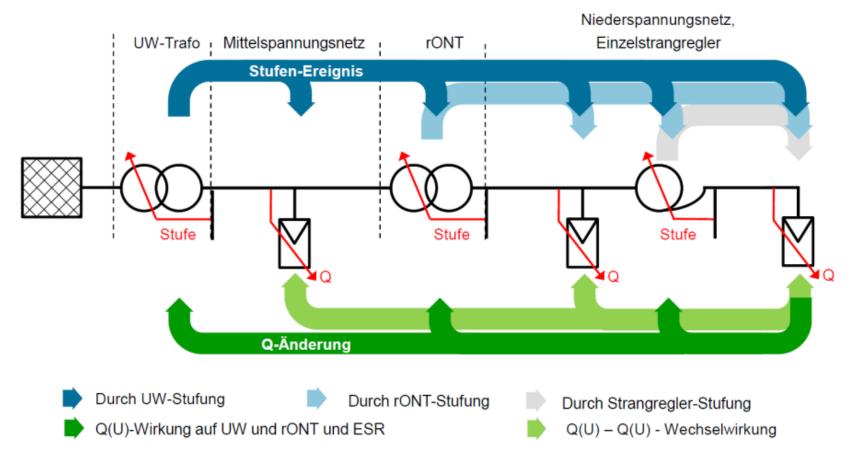
List of Q(V)-enabled inverters from Voralberger Energienetze GmbH (VKW)

https://www.vorarlbergnetz.at/inhalt/at/1524.htm (effective from 01.10.2017)

Manufacturer	Allowed	Not allowed	Not yet investigated	
ABB (Power One)			Aurora Trio	
AEconversion	Plant size <600W			
Bosch		All		
Delta		All		
Dhiel		Platinum		
Fronius	Galvo, Symo, Eco	IG Plus V-3, IG 15/20/30		
Касо		Powader		
Kostal		Piko		
Refusol		All		
Samil Power		All		
SMA	Tripower	FLX Pro		
SolarEdge	SE4k to SE17k	All larger types		
Solutronic			Solplus 80-120	
Steca		All		
Sungrow		All		
Zeversolar			Evershine TLC	

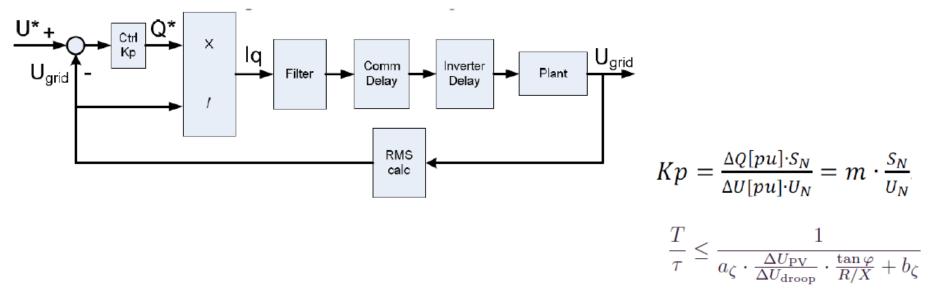
Since 2015, VKW already applied voltage dependent RPC on 2500 PV inverters in Austria

Pros & Cons of PV inv. reactive power


Pros and Cons	const. cosφ	cosφ(P)	cosφ(V)	Q(V)
Degree of voltage reduction	+ +	+ +	+	+
Optional voltage increase			+ +	+ +
Minimal overall reactive power		-	+	+
Active power decoupled from RP			-	+ +
Benefit versus costs DSO	-	-	+	+ +
Costs of parametrization	+ +	+	-	-

Q(V) control loop

IEFE Institute of Energy Systems and Fluid-Engineering


Ole Marggraf, 32. PV Tagung Deutschland, Staffelstein 2017

Controller Parameters : k prop. factor, time response т

A. Constantin and R. D. Lazar, "Open loop Q(U) stability investigation in case of PV power plants," in *Proc. 27th Eur. Photovoltaic Solar Energy, Conf. Exhib.*, Frankfurt, Germany, 2012, pp. 3745–3749

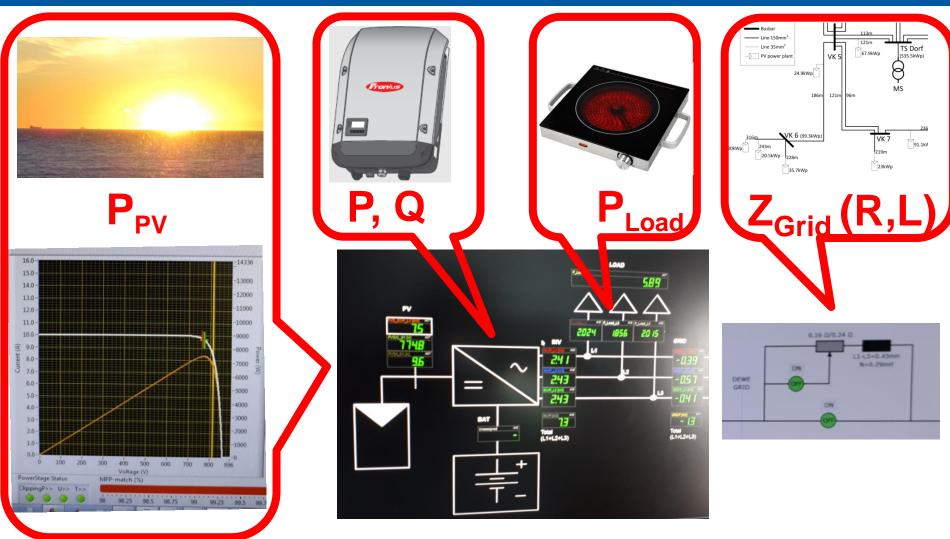
PV Inverter Test Lab at AIT

IEFE Institute of Energy Systems and Fluid-Engineering

School of

Engineering

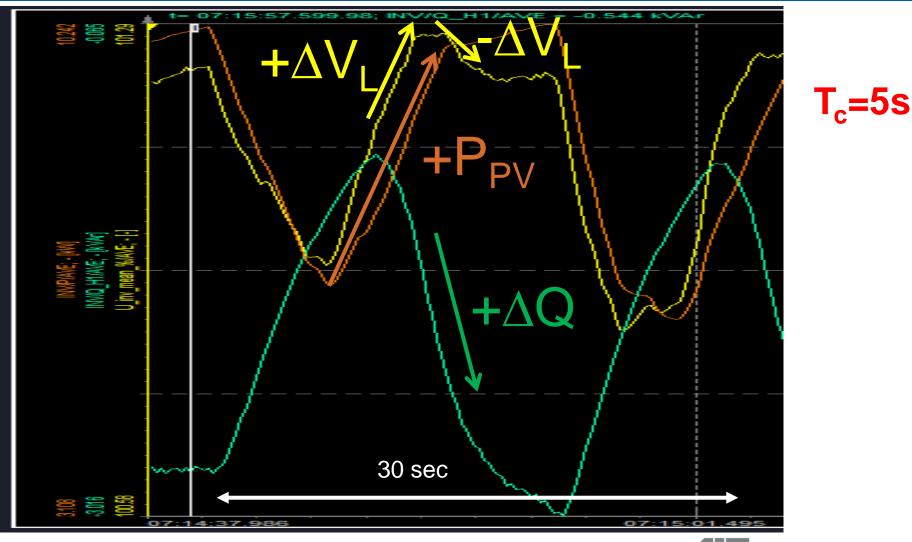
18.07.2018 Stability of Photovoltaic Inverters Reactive Power Control by the distribution GRID voltage



Zurich University of Applied Sciences;, Franz Baumgarrtner et. al. http://www.zhaw.ch/=bauf

Experimental Setup at AIT

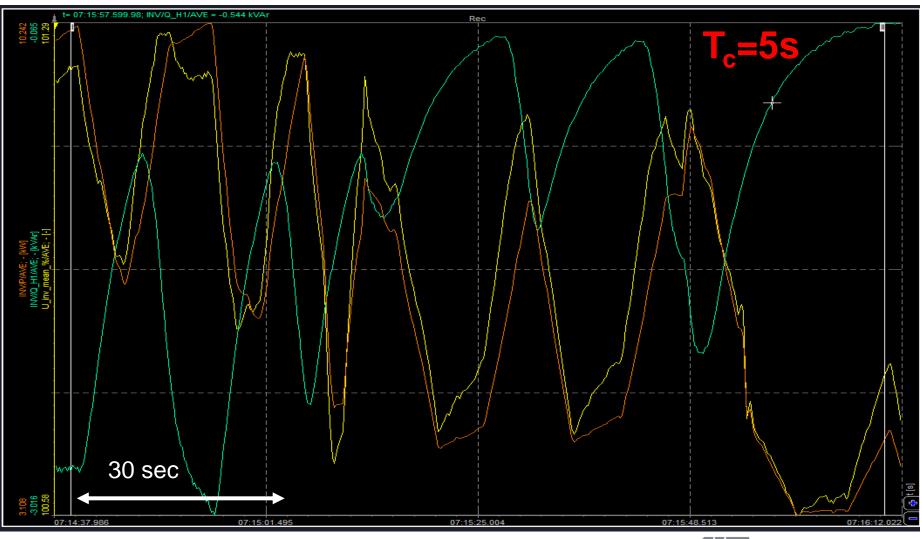
IEFE Institute of Energy Systems and Fluid-Engineering


18.07.2018

Stability of Photovoltaic Inverters Reactive Power Control by the distribution GRID voltage

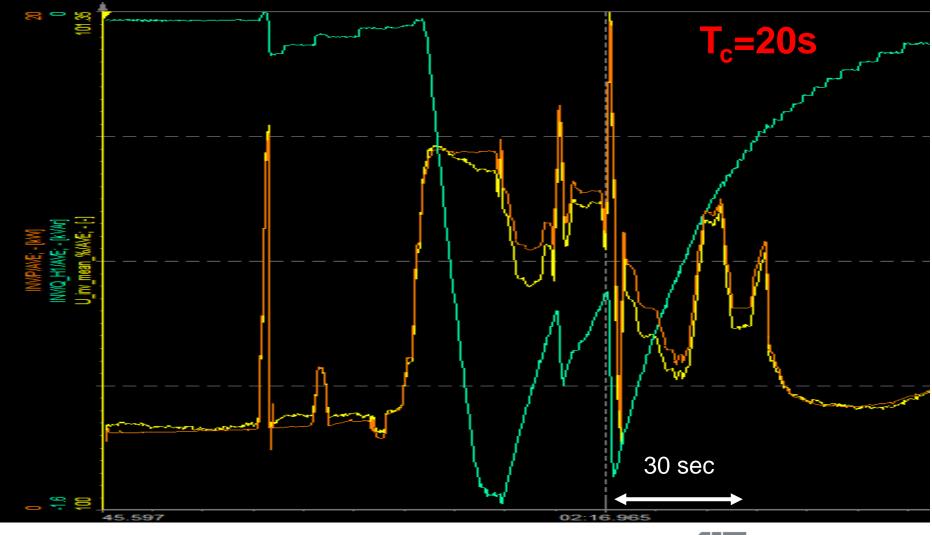
Zurich University of Applied Sciences;, Franz Baumgarrtner et. al. http://www.zhaw.ch/=bauf

Measurement Results – Q(V) daily char.


School of Engineering

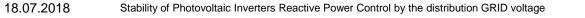
Measurement Results – Q(V) daily char.

School of Engineering

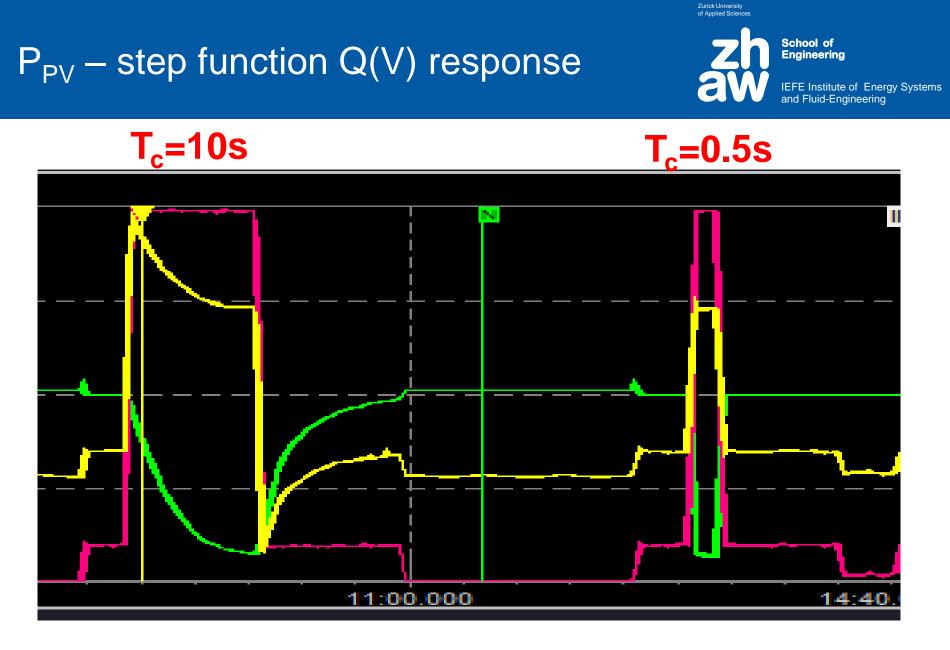


18.07.2018 Stability of Photovoltaic Inverters Reactive Power Control by the distribution GRID voltage

Measurement Results – Q(V) daily char.


School of Engineering

18.07.2018 Stability of Photovoltaic Inverters Reactive Power Control by the distribution GRID voltage

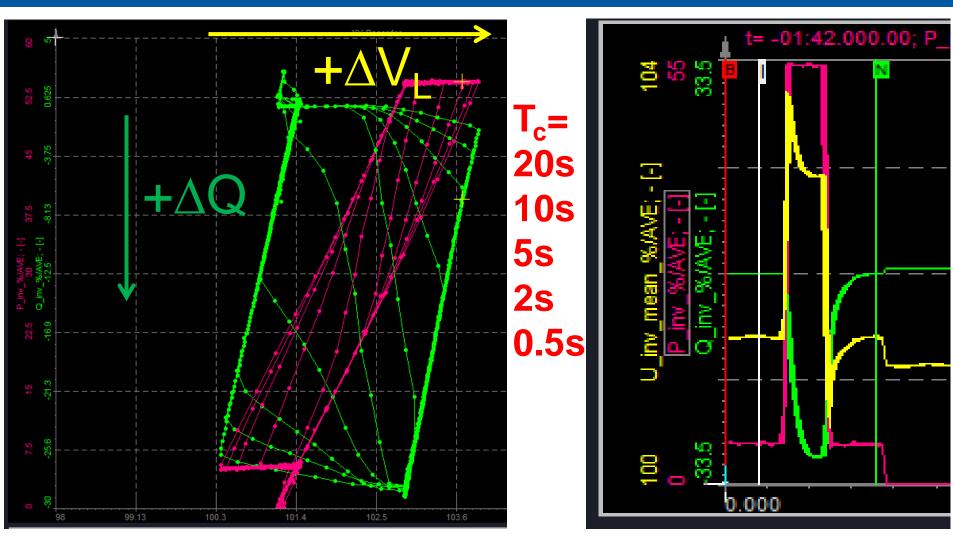

Zurich University of Applied Sciences;, Franz Baumgarrtner et. al. http://www.zhaw.ch/=bauf

Zurick University of Applied Sciences

School of

Engineering

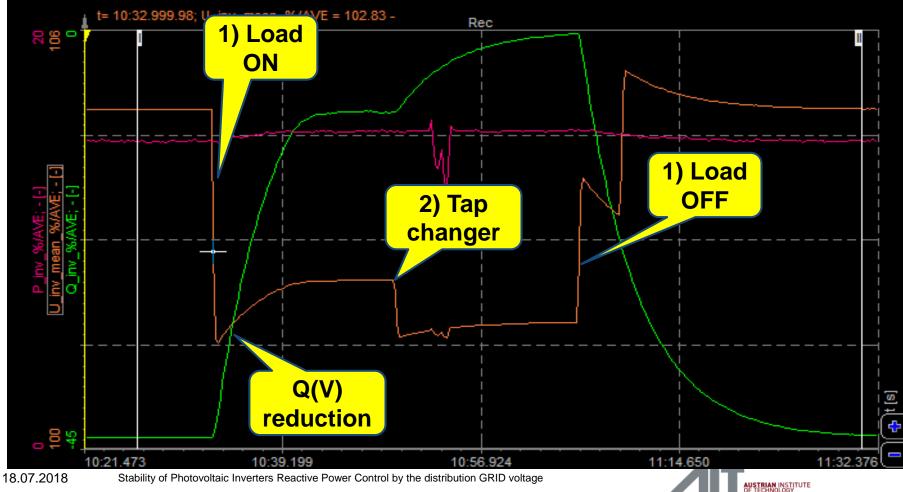
P_{PV} – step function Q(V) response



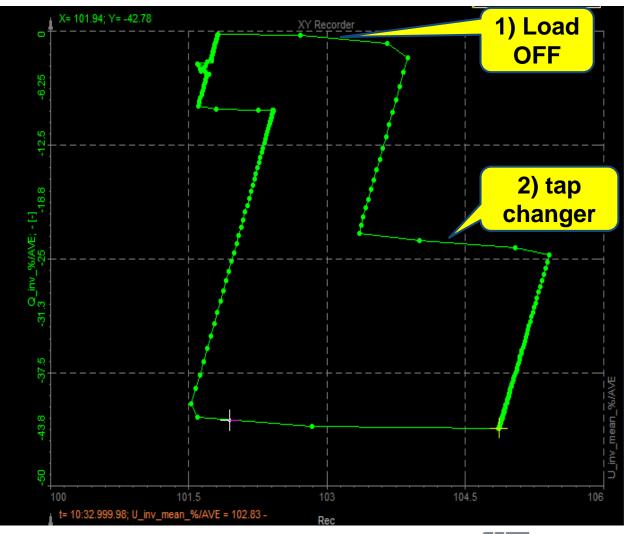
Controller time constant

School of Engineering

IEFE Institute of Energy Systems and Fluid-Engineering


AUSTRIAN INSTITUTE

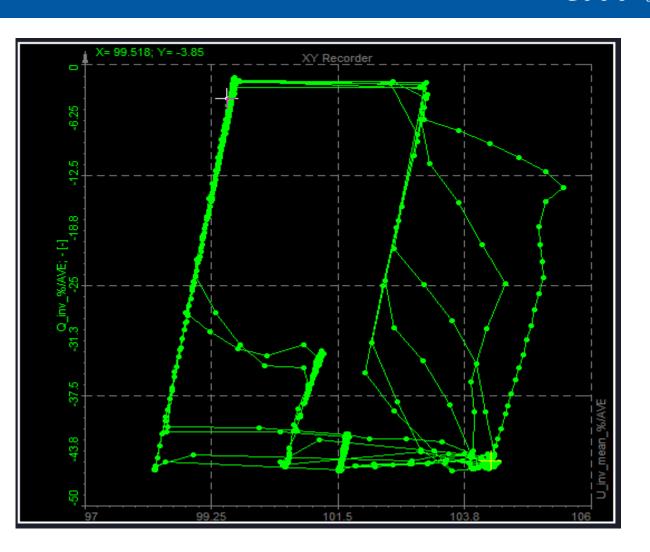
Two line voltage steps – fast T=1sec


Zurick University

Two line voltage steps – fast T=0.5sec

Two line voltage steps – fast to slow

Zurick University of Applied Sciences

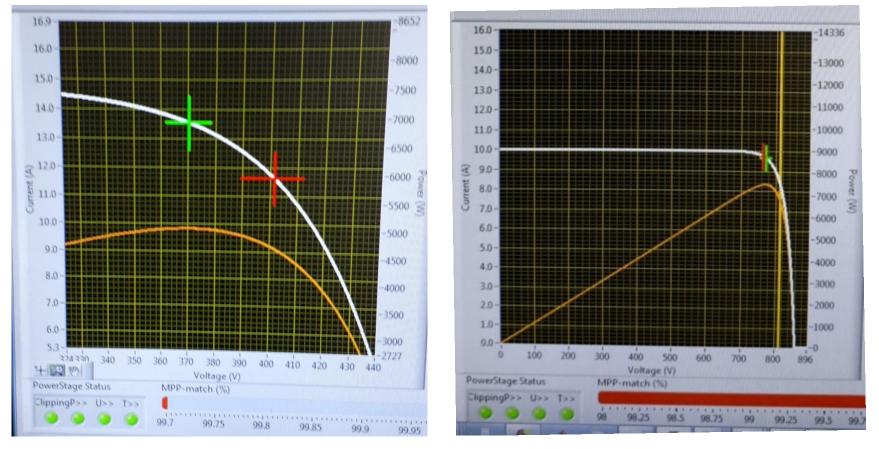

IEFE Institute of Energy Systems and Fluid-Engineering

T_c= 20s

10s

School of

Engineering


Zurich University of Applied Sciences;, Franz Baumgarrtner et. al. http://www.zhaw.ch/=bauf

Stability of Photovoltaic Inverters Reactive Power Control by the distribution GRID voltage

18.07.2018

S apparent power limit and MPP mismatch

Interference of Q(V) controller at the current limit of apparent power may cause small Q oscillations in sec range coupled with the PV maximum power tracker Voc.

Zurick University of Applied Sciences

IEFE Institute of Energy Systems and Fluid-Engineering

School of

Engineering

PV Inverters are Part of the Solution

Zurick University of Applied Sciences

IEFE Institute of Energy Systems and Fluid-Engineering

...Faster than a tap changer ...More powerful than a rotating machine

...Able to leap deep voltage sags in a single bound

Courtessy of B. Lydic, Fronius

Jay Johnson, Sandia Labs, USA India Smart Grid Week, March 7-10, 2017 ManekshawCenter, New Delhi, India.

Voltage dependent APC and RPC...

- PQ(V) control is a promising low-cost, low-tech method to reduce voltage rise
- PV inverters can be used to reduce impact of EV charging
- is a very cost-effective solution and it doesn't need further investments into IT infrastructures or hardware.
- Recommended Q(V) controller time constant τ should be lower than 5 sec closer to 1 sec without the risk of instability and thus reducing overshoot of reactive power in the distribution grid

Thank you for your attention

School of Engineering

IEFE Institute of Energy Systems and Fluid-Engineering

Project is funded by European Research Infrastructure supporting Smart Grid Systems Technology Development, Validation and Roll Out; Ref. No 03.007-2017; TIPI-GRID

Thanks to our industrial partners:

Part of the project is funded by the Swiss Federal Office of Energy (SFOE) under the contract number SI/501370-01

